
Parsing Outdoor Scenes from Streamed 3D Laser Data Using
Online Clustering and Incremental Belief Updates

Rudolph Triebela Rohan Paula Daniela Rusb Paul Newmana

a Mobile Robotics Group, Oxford University, UK
{rudi, rohanp, pnewman}@robots.ox.ac.uk

b Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, USA

rus@csail.mit.edu

Abstract
In this paper, we address the problem of continually
parsing a stream of 3D point cloud data acquired from a
laser sensor mounted on a road vehicle. We leverage an
online star clustering algorithm coupled with an incre-
mental belief update in an evolving undirected graph-
ical model. The fusion of these techniques allows the
robot to parse streamed data and to continually improve
its understanding of the world. The core competency
produced is an ability to infer object classes from simi-
larities based on appearance and shape features, and to
concurrently combine that with a spatial smoothing al-
gorithm incorporating geometric consistency. This for-
mulation of feature-space star clustering modulating the
potentials of a spatial graphical model is entirely novel.
In our method, the two sources of information: feature
similarity and geometrical consistency are fed continu-
ally into the system, improving the belief over the class
distributions as new data arrives. The algorithm obviates
the need for hand-labeled training data and makes no a-
priori assumptions on the number or characteristics of
object categories. Rather, they are learnt incrementally
over time from streamed input data. In experiments per-
formed on real 3D laser data from an outdoor scene, we
show that our approach is capable of obtaining an ever-
improving unsupervised scene categorization.

Introduction
Obtaining semantic knowledge about the environment from
a stream of data is a key component in any mobile robotic
system. Despite the availability of many useful and e⇥cient
methods aiming to solve the robot perception task, at least
two main challenges still remain: to relieve the requirement
of vast amounts of human-labeled training data and to build
a system that performs the learning task in an ever ongoing
way instead of once before system deployment. The latter
is often referred to as life-long learning, and the former is
known as unsupervised learning. In this paper, we present a
solution to both problems by means of an algorithm that con-
tinuously interprets a stream of 3D point cloud data acquired
from a laser sensor that is mounted on a mobile robot plat-
form. The two major components of our system are an on-
line clustering algorithm and a spatial smoothing algorithm

Copyright c⌅ 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example result of our scene parsing algorithm.
Colours represent object categories discovered by the algo-
rithm in a 3D laser scan scene of a car park with a building,
trees, a hedge in the front, and ground plane. The algorithm
started with a comparably poor categorization using a sin-
gle point cloud and improved its performance incrementally
(result after 17 point clouds is shown).

based on an ever growing undirected graphical model: while
the former groups observed parts of the environment accord-
ing to their similarity and refines that grouping as new data is
observed, the latter enforces geometric consistency by prob-
abilistically reasoning on cluster memberships of parts that
are physically close to each other. Both algorithms are on-
line in the sense that their internal representations grow and
their results are refined with every new data input obtained
from the sensors, and these representations are not rebuilt at
every time step. Although this is substantially di�erent from
the claim that the system runs in real-time – which we ex-
plicitly do not make here, the concept of an unsupervised
online learning perception algorithm is a novel contribution
in the field of life-long learning for robot perception. In our
experiments we show that the core computation can be done
with comparably few update operations while still obtaining
good performance in terms of semantic interpretation of the
observed environment.

(a) Mesh segmentation (b) Online clustering (c) Scene graph construction (d) Scene graph inference

Figure 2: Processing pipeline key steps. (a) Result after segmenting the triangle mesh. Each color represents a di�erent segment.
(b) Result after online clustering in feature space. Each color represents a di�erent feature cluster. (c) Construction of the scene
graph. Nodes are centers of oriented bounding boxes (OBBs) around each segment. Edges connect segments with overlapping
OBBs. (d) Result after inference in the scene graph. The class label distribution is smoother compared to (b), as can be seen,
e.g., in the upper left corner of the building.

Related work
Some approaches for unsupervised object discovery have
been presented earlier [Endres, Plagemann, and Stachniss,
2009; Ruhnke et al., 2009; Bagon et al., 2010]. However,
these techniques either assume a pre-segmentation of the
objects, one object class per image, or a known number of
objects and their classes. In contrast, Spinello et al. [2010]
proposed an unsupervised discovery algorithm that does not
require such assumptions, but instead utilizes the regularity
of patterns in which the objects appear. However, in general
regular patterns such as the locations of windows on a facade
are not available, which is why this technique is not appro-
priate in our case. Cho, Shin, and Lee [2010] developed a
method to detect and segment similar objects from a sin-
gle image by growing and merging feature matches. Triebel,
Shin, and Siegwart [2010] presented a method to discover
objects in indoor scenes without hand-labeled training data.
Similar to that approach, we also use clustering and prob-
abilistic reasoning, but our approach is conceptually an on-
line learner, where both the clustering and the reasoning part
are performed using incremental update steps rather than
batch processing at every point in time. Furthermore, Maye
et al. [2011] use online unsupervised change-detection and
Bayes filtering to discover driving behaviours from streamed
IMU and camera data.

Algorithm Overview
Given a sequence of 3D range scans, our task is to auto-
matically label the scenes without prior training and with
a model representation that is refined and improved during
operation. We note that in our unsupervised learning frame-
work, instances of classes cannot be detected, because no
class model is given explicitly. The existence and type of
an instance must be discovered or inferred by accumulat-
ing evidence via appearance similarity and spatial coherence
patterns from data. Therefore, we propose a framework that
combines online feature-space clustering with an incremen-
tal version of a spatial smoothing algorithm to obtain and
improve geometric consistency as new data is observed. At
each time step, when a new 3D range scan is available, our
system repeats the following major three stages (see also
Fig. 2) which are then described in detail in the next section.

• First, the obtained point cloud is converted into a tri-
angle mesh, and a low-level segmentation is applied to
the mesh. The resulting segments contain more infor-
mation than single scan points or triangles.

• Next, each segment is described by a set of features
such as shape and orientation, and the feature vectors
are fed into an online clustering algorithm which ac-
cumulates information about the segments’ similarities
over time by refining and extending the current cluster-
ing based on the new observations.

• An undirected graphical model named the scene graph
is refined and extended with the new observations. The
scene graph poses geometrical constraints on the dis-
covered class labels and reduces inconsistencies caused
by di�erent labelings for overlapping segments.

Online Preprocessing Steps
The processing pipeline begins by creating a triangular mesh
for the incoming 3D point cloud according to the scan mani-
fold order, followed by a segmentation using a variant of the
algorithm of Felzenszwalb and Huttenlocher [2004], where
the dot product of the normal vectors corresponding to two
adjacent triangles is used as a dissimilarity measure. This
results in segments with a consistent distribution of normal
vectors, representing for example consistently flat or round-
shaped surface patches. Then, for each resulting mesh seg-
ment, a number of feature vectors based on samples on the
surface is computed and then stacked together into one long
feature vector. In particular, we compute spin images [John-
son, 1997] per segment and use the mean spin image as
one feature vector. Furthermore, we compute three kinds of
shape distributions [Osada et al., 2002], i.e. histograms over
unary or binary functions applied to the samples on the mesh
surface. For the first kind, we use the Euclidean distance be-
tween the two samples, for the second we use the dot product
of the corresponding normal vectors, and for the last we use
the unary function of the elevation angle of the normal vec-
tor. Finally, we compute shape factors [Westin et al., 1997]
for each mesh segment, i.e. the fractions e1

e2
, e1

e3
, and e2

e3
of the

three eigenvalues e1, e2, e3 of the scatter matrix computed for
the segment. As mentioned, all feature vectors use samples
on the surface of the mesh segment. To obtain invariance

to the sensor’s variable sample density, we re-sample points
uniformly on the mesh surface and use them for the feature
extraction.

In addition to the feature vectors, we compute an Ori-
ented Bounding Box (OBB) Bi around each mesh segment.
The three main axes of Bi are determined by the eigen vec-
tors of the segment’s scatter matrix, and the dimensions of
the box are chosen such that the segment fits tightly into it.
The OBBs will be used later to find mesh segments that are
close to each other. We do this by defining a distance mea-
sure based on the amount of overlap between the two cor-
responding OBBs. An e⇥cient way to compute this overlap
is to draw uniform samples in one OBB and determine the
fraction of samples that are contained in the other OBB.

Star Clustering and Online Organization
We use the star clustering algorithm [Aslam, Pelekhov, and
Rus, 2004] to cluster segments obtained from the low-level
segmentation based on the shape and appearance features.
This algorithm organizes a data corpus into star-shaped clus-
ters based on a given similarity metric. Using the cosine dis-
tance metric between feature vectors, the star clustering al-
gorithm guarantees a minimum similarity between any pair
of points associated with a cluster. Unlike the k-means al-
gorithm and many other clustering methods, the star cluster-
ing algorithm does not require the number k of final clus-
ters as an input. Instead, it discovers this number depending
on the desired minimum similarity between the elements in
the cluster. The star clustering algorithm is computationally
very e⇥cient and can be run online. The ability to cluster
incrementally makes it especially suitable for our problem
setting, where data collection is incremental in nature. This
allows the feature space clustering to improve continually as
more information about new or existing object categories is
encountered by an exploring robot.

Formally, the data corpus is represented as a similarity
graph, G = (V,E,w) where the vertices V correspond to
feature vectors f from laser segments, and weights w as-
signed to the edges E represent feature similarity. Normal-
ized cosine distance d(fi, f j) =

fi·f j

✓fi✓✓f j✓ measures the similar-
ity between features fi and f j. The similarity graph G can
be studied at various pair-wise similarity thresholds . The
thresholded graphG is obtained fromG by removing edges
with pairwise similarity less than , Fig. 3(a). A star-shaped
subgraph on m + 1 vertices consists of a star center and m
satellite vertices, where edges exist between the star center
and each of the satellite vertices, Fig. 3(b).

The clustering algorithm covers the thresholded graph G
with a minimal cover of maximal star-shaped subgraphs,
Fig. 3(c). The number of clusters is naturally induced by the
dense cover. The expected size of the star cover on n ver-
tices is O(log(n)). In the star cover obtained, each vertex is
adjacent to at least one center of equal or larger degree and
no two centers can be adjacent, Fig. 3(c). Satellite segments
similar to multiple categories can be associated with multi-
ple star clusters. Each node maps to a vector space with a
cosine similarity metric. By examining the geometry of the
star-subgraphs in the implied vector space, Fig. 3(b) the ex-

pected similarity between satellite vertices can be obtained
as Eq. (1). Here, the center-satellite similarities for any two
satellites in the star are represented by cos�1 and cos�2
and cos⇥ represents the expected satellite-satellite similar-
ity. The expected pairwise similarities are high and implying
dense accurate clustering in feature space.

cos⇥ � cos�1cos�2 +

 + 1
sin�1sin�2 (1)

The algorithm is asymptotically linear in the size of
the input graph and can be obtained incrementally by re-
arranging star centers in the presence of new data points and
maintaining the correct star cover, Fig. 4. The number of
re-arrangement operations required is usually small, which
we verified experimentally. Further, we used an optimized
version of the algorithm that saves operations by predicting
the future status of a satellite vertex or other star-satellite
changes induced by the inserted vertex.

The clustering thus obtained represents initial evidence
for object categories based on feature space similarity. Fur-
ther, since the clusters evolve incrementally with each new
input scan, the object categorization improves continually
and incrementally with acquired data. Note that categoriza-
tion obtained till this stage is based on shape and appearance
similarity only. Next, we describe a probabilistic graphical
model that incorporates the geometric context information
and refines online the object categories obtained through
feature space star clustering.

Graph-based Smoothing
As we will show in the experiments, the online star cluster-
ing method presented in the previous section yields a mesh
segmentation that is fairly good in comparison with a human
labelling. However, as it is based on features only, it fails
where objects can have di�erent appearances, for example
due to occlusions. Therefore, we additionally leverage infor-
mation obtained from geometric constraints by constructing
a simplified Conditional Random Field (CRF), where each
node corresponds to a mesh segment and each edge con-
nects segments that are su⇥ciently close to each other in a
geometric sense. The reasoning behind this is that segments
that are physically close to each other are more likely to have
the same label. Mathematically, for the given set of feature
vectors f = f1, . . . , fN we aim to find a set of segment labels
l = l1, . . . , lN that maximise the conditional probability:

p(l | f) =
1

Z(f)

⌥

V
�(fi, li)

⌥

(i, j E)

⌦(fi, f j, li, l j), (2)

where Z(f) is the partition function, and the node and edge
potentials are defined as:

log�(fi, li,wn) = wn · fn(fi, li) (3)
log⌦(fi, f j, li, l j,we) = we · fe(fi, f j, li, l j). (4)

Here, wn and we are the node and edge weights. The CRF
we use is simplified in that the edge feature function does
not depend on the node labels and both feature functions are
scalars between 0 and 1. As node feature function fn we use:

(a) Thresholded similarity graph

s1

s2

s3

s4

s5

C

C

s1

s2

V ectorStar subgraph

�2

�

space

�1

(b) Star-shaped subgraph (c) Graph organized into clusters.

Figure 3: Star Clustering. (a) Similarity graph G where each feature vector fi is a node and edges indicate similarities exceeding
threshold . (b) Star-shaped subgraph with center C (red) and five satellite vertices (blue). Each node maps to a vector space
with a cosine similarity metric. (c) The graph organized into clusters via a minimal covering with maximal star sub-graphs.

(a) Vertex insertion (b) Re-arranged star clusters

Figure 4: (a) A new data point may introduce additional links in the similarity graph (green) a�ecting adjacency and hence
the validity of the current minimal star cover. (b) Inconsistent stars are re-arranged (green circles). The number of broken stars
largely determine the running time. On real graphs, the avg. number of stars broken is usually small (experimentally verified)
yielding an e⇥cient incremental approach.

fn(fi, li) =

�⌅⌅⌅⌅⇤
⌅⌅⌅⌅⇥

1 if fi = cli
d(fi,cli)⇧

⇧:fi�c⇧ d(fi,c⇧) if fi � cli

0 else,
(5)

where ck denotes the cluster center of cluster k in G and �
represents a connection by an edge in G. The advantage of
this node feature function is that in most cases, namely when
fi is only connected to one cluster center, a change of cluster
membership only a�ects one node potential. This is impor-
tant for an e⇥cient online belief update. The simplified edge
feature function is defined as fe(fi, f j) = do(Bi, Bj), where do
is an estimate of the overlap between the bounding boxes Bi
and Bj around the mesh segments corresponding to fi and f j.

Usually, the node and edge weights wn and we are ob-
tained by maximising Eq.(2) for a given training data set
with ground-truth labels l⇤ for each feature vector fi. How-
ever, our approach is totally unsupervised, thus a hand-
labeled training set is not available. Instead, we fix wn to 1
and determine we empirically using an evaluation set. This is
possible because the feature functions are particularly sim-
ple and only the ratio of we and wn is important. In the ex-
perimental section, we give more details on choosing we.

Inference
To perform the inference step in the CRF, we use loopy
belief propagation (LBP), [Yedidia, Freeman, and Weiss,
2005]. In general, LBP iteratively computes messages de-
fined as label distributions between the nodes in the CRF.
First, each message mi j from node i to node j is initialised
with the uniform distribution. Then, in each iteration ⌅, the

messages are recomputed based on the node and edge poten-
tials and the messages from the previous iteration ⌅ � 1. In
our case, we are only interested in the maximum likelihood
labelling, and we consider messages to be in log-space for
numerical stability. Therefore, we use the max-sum rule to
compute the messages:

m(⌅)
i j (l j) ⌥ max

li
log�i + log⌦i j +

⌃

k N(i)\ j

m(⌅�1)
ki (li). (6)

Here, we used a short-hand notation for the potentials and
N(i) denotes all the nodes connected to node i. Eq. (6) is
repeatedly computed until a convergence criterion is met. A
good choice is to compute the amount of change of the mes-
sage and stop iterating when a minimal change � is reached.
Then, the belief bi at each node is computed as

bi(li) ⌥ ⌥(log�i +
⌃

j N(i)

mji(li)), (7)

where ⌥ normalizes the belief so that it is a valid distribution.

Online Belief Update
Using standard LBP for the inference requires a re-
initialization of all messages every time a new scan is ob-
served. Thus, the number of message updates grows at least
linearly with the number of totally observed mesh segments.
To avoid this, we perform the message update online, i.e.
we only update messages that got a�ected by a change in
the cluster graph G and the messages that depend on them.
First, we note that in the CRF, nodes are never removed, and
a change in G can a�ect nodes from earlier points in time.

Thus, we need to provide two kinds of update operations:
inserting a new node into the CRF, and changing the feature
function of an existing node. In the first one, new messages
are added, in the second, existing messages need to be re-
computed, which is essentially the same as removing the old
message and adding a new one. The major problem here is
however, that a newly inserted and initialised message has
maximal entropy and can not propagate the same amount
of information as the existing messages obtained after LBP
convergence earlier. This leads to an ”over-voting” of the
potentials of the new nodes from the existing nodes.

To overcome this problem, we store all messages com-
puted in each LBP iteration in a message history mi j =

m(1)
i j ,m

(2)
i j , Then, before computing (6), we determine the

minimal history length µ of all message histories mki where
k N(i) \ j, and the max-sum-rule turns into

m(µ+1)
i j (l j) ⌥ max

li
log�i + log⌦i j +

⌃

k N(i)\ j

m(µ)
ki (li). (8)

Some care has to be taken here: to avoid inconsistencies, all
messages in the history mi j later than µ need to be removed.
Also, all message histories that depend on mi j need to be
updated as well. However, the amount of change caused by
these updates decreases with every set of successor mes-
sages to be updated. To avoid an entire update of all message
histories, we determine a threshold ⇤ and stop updating mes-
sage histories when the change drops below ⇤. Note that this
is di�erent from the convergence criterion using �: while ⇤
determines the number of messages updated after an online
update – and thus the performance di�erence between online
and o⇤ine processing, � influences the amount of smooth-
ing. By changing ⇤ gradually towards 0, the online LBP al-
gorithm turns into its standard o⇤ine version. A discussion
on ⇤ is provided in the experimental section.

Cluster Assignment
To be able to perform the online belief update, we need
to find all nodes in the CRF, for which the potential �i
changes after inserting new nodes into G. As � directly de-
pends on the cluster membership of a node, we need to solve
the data association between the previous clustering Ct�1 =
Ct�1

1 , . . . ,C
t�1
m and the current clustering Ct = Ct

1, . . .C
t
n at

every time step and find the elements that changed cluster.
Here, we need to consider only those nodes which have been
removed from a cluster Ct�1

i , because the others have either
been removed themselves from another cluster Ct�1

j or they
were added newly to Ct�1

i while growing the cluster graph G
(in the latter case, no message histories exist, and the update
is done as in regular LBP). To assign previous clusters Ct�1

i
to current clusters Ct

j, we therefore define a cost function c
based on the number of removed cluster elements:

c(Ct�1
i ,C

t
j) = L(↵(Ct�1

i), ↵(Ct
j)) � I(↵(Ct�1

i), ↵(Ct
j)). (9)

Here, ↵ sorts the elements of a cluster with respect to their
global element indices, L is the Levenshtein (edit) distance
of two sequences, i.e. the minimal number of deletions, re-
placements and insertions I required to change the first se-

quence into the second. Thus, c computes the minimal num-
ber of deletions and replacements of elements in Ct�1

i . The
data association between Ct�1 and Ct is then done by min-
imizing the total association cost between all cluster pairs
using an algorithm by Edmonds and Karp [1972].

Then, once a cluster assignment is obtained, all messages
that are sent from a node in the CRF, for which the feature
vector fi has changed cluster membership, are removed, and
new message histories are computed as in Eq. (8).

Results
To evaluate our approach, we ran experiments on streamed
3D laser range data acquired with an autonomous car. The
sensor consists of three SICK LMS-151 laser scanners
mounted vertically on a turn table. The rotation frequency
was set to 0.1Hz. We drove the car slowly (⌃ 15km/h)
around our research site. The obtained point cloud data is
comparably dense: each point cloud consists of 100,000 to
160,000 points, resulting in a data rate of 10,000 to 16,000
points per second. For evaluation we use qualitative and
quantitative measures. The qualitative evaluation is done by
visualizing the discovery results with di�erent colors for
each category, as already shown in Fig. 1. The quantitative
measures are: number of resulting categories, number of up-
date steps, and the entropy-based v-measure [Rosenberg and
Hirschberg, 2007], which is defined as the harmonic mean
of homogeneity and completeness of the obtained labelling
compared to a human-labeled ground-truth.

Qualitative Evaluation
Fig. 5 shows the results of our scene parsing algorithm over
a sequence of time. In the figure, time evolves from the top
image row to the bottom row. Each row of images shows the
result as it was obtained at a particular time step. For an im-
proved visibility, we visualize the results in two ways: First,
we show each clustering result as a colored mesh represen-
tation with each color corresponding to a di�erent cluster
in the left image of each row. In addition to that, we show
meshes for each obtained cluster where the particular cluster
is highlighted in red (remaining images of each row). In the
example, we used a similarity threshold of 0.7 for clus-
tering. This results in a smaller number of clusters and in a
slightly worse overall performance of the algorithm com-
pared to the result shown in Fig. 1 (see next section for
details). However, it also gives the opportunity to highlight
the algorithm’s ability to improve its performance over time:
As we can see, the number of obtained clusters is very low
when the first couple of point clouds are processed. As a re-
sult, the labelling is comparably poor, assigning for example
the trees and the building to the same category. However,
as the algorithm obtains more information about its environ-
ment, it increases the number of categories and improves its
scene parsing performance: in the bottom image row, a clear
distinction between the ground plane, the building and the
trees can be seen. To visualize the e�ect of the graph-based
smoothing we show two examples of labelings before and
after smoothing in Fig. 9. We can see that the labeling after
smoothing is clearly more consistent, visible for example in
the hedge (left images) and the building (right images).

Figure 5: Scene parsing results (best viewed in color). Each row shows the result after processing a di�erent number of point
clouds: from the top to the bottom, results are shown after 2, 4, 6, 10, and 17 point clouds. The left image in each row visualizes
the obtained scene parsing result with one color for each discovered category. The other images in each row highlight each
of the categories with the most elements in red. Note that initially, only two categories are discovered, and the categorization
is incorrect (e.g. the tree and the building are assigned the same label). However, as the algorithm evolves over time, the
categorization improves, and the number of classes is increased.

Table 1: Statistics for online star clustering.
Data set A Data set B

Threshold, 0.7 0.8 0.9 0.7 0.8 0.9

Num. of clusters 107 580 2699 8 14 84
Graph edges (x105) 220.48 98.08 23.40 19.32 13.29 4.02

Insertion/iter (msec) 122.14 85.72 19.98 19.53 31.59 4.54
Insertion/scan (sec) 4.15 2.91 0.67 1.09 1.76 0.25
Insertion time (sec) 1450.85 1018.28 237.44 44.72 72.35 10.41

Stars broken/iter 0.23 0.60 0.55 0.02 0.08 0.21
Stars broken/scan 7.68 20.40 18.60 1.07 4.48 11.75
Total stars broken 2688 7141 6511 44 184 482

Quantitative Evaluation

To evaluate online star clustering quantitatively, we used two
di�erent data sets: data set A consisted of 350 point clouds
and resulted in a total of 11879 segments. It was collected
on roads surrounding the test site with a vehicle speed v of
about 40km/h and a scanner rotation frequency of 1Hz. Data
set B is the one mentioned earlier with v ⌃ 15km/h and
fr = 0.1Hz, consisting of 41 scans.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20

V
-M

e
a

su
re

Point cloud index (time step)

V-Measure for Various Amounts of Smoothing

no smoothing
edge weight 2.0
edge weight 3.0
edge weight 4.0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

V
-M

e
a

su
re

Point cloud index (time step)

V-Measure for Online and Offline Updates

no smoothing
online BP, epsilon = 1.0
online BP, epsilon = 0.2

offline BP

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

s

Point cloud index (time step)

Number of Message Updates per Time Step

new messages
updated messages epsilon=1.0
updated messages epsilon=0.2

total number of messages (offline)

Figure 8: Left: V-Measure compared to ground truth for each time step with di�erent values of we (all o⇤ine). In the beginning,
smoothing makes the result worse, as the number of clusters is reduced too much. Later, smoothing improves the result. The
amount of smoothing has not a strong influence. Middle: Comparison between online and o⇤ine LBP. With decreasing value of
⇤, online performance approaches the o⇤ine quality, with some random e�ects. Right: Number of messages updated in online
and o⇤ine LBP. The red line shows the number of new messages introduced at each time step, which is the minimum number
of necessary updates. A smaller ⇤ leads to more message updates.

Figure 9: E�ect of smoothing (best viewed in color) on two examples. Left image for each case shows the result using only
online star clustering, the right image is the result after applying graph-based smoothing. As can be seen, class labels are clearer
and distributed more precisely within each object.

0 100 200 300 400
0

500

1000

1500

2000

2500

3000
Num. of clusters with insertions

Num. of scans

N
u

m
.

o
f

cl
u

st
e

rs

sigma 0.9

sigma 0.8

sigma 0.7

0 100 200 300 400
0

2000

4000

6000

8000
Agg. stars broken with insertions

Num. of scans

A
g

g
.

st
a

rs
 b

ro
ke

n

sigma 0.9

sigma 0.8

sigma 0.7

0 100 200 300
0

50

100

150

200

250

300

Stars broken with insertions

Num. of scans

N
u

m
.

o
f

s
ta

rs
 b

ro
k
e

n

Figure 6: Left: cluster growth. Middle: number of aggregate
stars broken for data set A with varying thresholds. This
number grows linearly with iterations. The growth rate is
small compared to the number of nodes inserted in the graph.
Right: number of stars broken in each scan for = 0.8. On
average this number is low and larger peaks are rare.

Table 1 shows e⇥ciency results for the star clustering al-
gorithm for {0.7, 0.8, 0.9}. Higher values of reduce the
number of edges in the graph, resulting in an increase of the
number of clusters N. For data set A, the value of N varied
between 107 and 2699, while for data set B it was between
8 and 84. The average number of stars broken during inser-
tion indicates the work done to re-arrange the existing graph.
Note that this number is very small. As an example, a to-
tal of 2688 stars were broken while incrementally clustering
11897 segments (0.23 stars broken per insertion). The aver-
age insertion time per scan ranged from 0.67sec to 4.15sec
for data set A and from 0.25sec to 1.76sec for data set B.
The insertion time is a function of the graph size, number
of stars broken per iteration and the underlying similarity

Clusters

D
is

tr
ib

u
ti
o

n

Similarity Distribution Per Cluster

2 4 6 8 10 12

1.0

0.9

0.8

0.7

0.6 0.02

0.04

0.06

0.08

0.1

0.12

Clusters
D

is
tr

ib
u
ti
o

n

Similarity Distribution Per Cluster

20 40 60

1.0

0.9

0.8 0.05

0.1

0.15

0.2

0.25

0.3

Figure 7: Probability histograms (plotted vertically) for all
pair-wise similarities between satellite vertices for each
cluster obtained at = 0.8 (left) and = 0.9 (right) for
Data set B. Red line indicates threshold. The expected simi-
larity values were found higher than or close to indicating
that star clusters are reasonably dense.

distribution for the data set. The cosine similarity computa-
tion time grows linearly with the number of vertices and was
123.34 sec for data set A and 4.46sec for data set B.

Fig. 6 (left) plots the cluster count after each insertion
for data set A (results were similar for data set B). Overall,
the number of clusters N increases over time as new seg-
ments are added. As the robot explores new environment,
N grows rapidly with newly acquired information. Later,
the clusters become increasingly representative of the en-
vironment, stabilize, and hence the growth rate shows a de-
cline. For smaller values of the saturation e�ect is more
prominent and lies always below the graph with a higher .
Fig. 6(middle) plots the aggregate number of stars broken
during insertion, showing an approximately linear growth

over time with a small growth rate compared to the number
of vertices in the graph. It also shows instants when many
stars are broken (when the graph re-structures), more com-
monly observed for the run with the higher value of = 0.8,
where N is high compared to lower values of . Fig. 6(right)
plots the number of stars broken for each scan. On average
this number is low and larger peaks are less common.

Fig. 7 illustrates the clustering quality at a specified
threshold for data set B. For each cluster, the similar-
ity distribution for all pair-wise satellite vertices was plot-
ted along y-axis (bin size 0.0125). Probability histograms
were smoothened to account for variable cluster sizes and
sampling error as suggested by Cussens [1993]. Clustering
at threshold ensures that the center-satellite similarities
within the star-subgraph are at least (by construction). Us-
ing Eq. (1) we obtain the expected satellite-satellite similar-
ity as , plotted as a horizontal line in Fig. 7. The figure
shows that the expected similarity values for clusters was
found to be above or close to . This indicates that star clus-
ters are reasonably dense and yield clusters with high ex-
pected pair-wise satellite similarities. The results were simi-
lar for data set A and not included in the interest of space.

Fig. 8 shows a performance comparison with respect to
di�erent edge weight parameters we and online message up-
date thresholds ⇤. The left and middle figure show the V-
measure compared to a hand-labeled ground truth over time.
We can see that the performance increases over time and that
the online LBP version for ⇤ = 0.2 is only slightly worse
than the o⇤ine version. However, as shown in Fig. 8(right),
there is a significant reduction in the number of updated
messages compared to the o⇤ine LBP. A smaller ⇤ improves
the V-measure performance, but it also increases the mes-
sage passing horizon causing more message updates and
thus a longer computation time.

Conclusions
In this paper, we presented an unsupervised scene parsing al-
gorithm that improves its performance during operation time
as more information becomes available. We achieve this by
combining an online clustering algorithm with an undirected
graphical model that grows continually over time. As a re-
sult, for each new data frame our algorithm refines its inter-
nal representation with only a few update steps as opposed to
a complete recomputation required by an o⇤ine learner. Ad-
ditionally, its quantitative performance quickly approaches
that of the o⇤ine counterpart as new data arrives. We be-
lieve that this competency, applied in outdoor environments,
constitutes an important step towards life-long autonomy.

Acknowledgements
This work was partly funded by the EU project EUROPA-
FP7-231888. Paul Newman was supported by an EP-
SRC Leadership Fellowship, EPSRC Grant EP/I005021/1.
Daniela Rus was supported for this work in parts by the
MAST Project under ARL Grant W911NF-08-2-0004 and
ONR MURI Grants N00014-09-1-1051 and N00014-09-1-
1031. We thank Benjamin Davis for maintaining the plat-
form used for this research.

References
Aslam, J.; Pelekhov, E.; and Rus, D. 2004. The star clus-
tering algorithm for static and dynamic information orga-
nization. Journal of Graph Algorithms and Applications
8(1):95–129.
Bagon, S.; Brostovski, O.; Galun, M.; and Irani, M. 2010.
Detecting and sketching the common. In IEEE Computer
Vision and Pattern Recognition (CVPR).
Cho, M.; Shin, Y. M.; and Lee, K. M. 2010. Unsupervised
detection and segmentation of identical objects. In IEEE
Computer Vision and Pattern Recognition (CVPR).
Cussens, J. 1993. Bayes and pseudo-Bayes estimates of
conditional probabilities and their reliability. In Proc. of the
European Conf. on Machine Learning, 136–152. Springer.
Edmonds, J., and Karp, R. 1972. Theoretical improvements
in algorithmic e⇥ciency for network flow problems. Journal
of the ACM (JACM) 19(2):248–264.
Endres, F.; Plagemann, C.; and Stachniss, C. 2009. Unsu-
pervised discovery of object classes from range data using
latent Dirichlet allocation. In Proc. of Robotics: Science and
Systems.
Felzenszwalb, P. F., and Huttenlocher, D. P. 2004. E⇥-
cient graph-based image segmentation. Int. J. Comput. Vi-
sion 59(2):167–181.
Johnson, A. 1997. Spin-Images: A Representation for 3-
D Surface Matching. Ph.D. Dissertation, Robotics Institute,
Carnegie Mellon Univ.
Maye, J.; Triebel, R.; Spinello, L.; and Siegwart, R. 2011.
Bayesian on-line learning of driving behaviors. In IEEE Int.
Conf. on Robotics and Automation (ICRA).
Osada, R.; Funkhouser, T.; Chazelle, B.; and Dobkin, D.
2002. Shape distributions. ACM Trans. on Graphics.
Rosenberg, A., and Hirschberg, J. 2007. V-measure: A
conditional entropy-based external cluster evaluation mea-
sure. In Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), 410–420.
Ruhnke, M.; Steder, B.; Grisetti, G.; and Burgard, W. 2009.
Unsupervised learning of 3d object models from partial
views. In IEEE Int. Conf. Robotics and Automation (ICRA).
Spinello, L.; Triebel, R.; Vasquez, D.; Arras, K.; and Sieg-
wart, R. 2010. Exploiting repetitive object patterns for
model compression and completion. In European Conf. on
Computer Vision (ECCV).
Triebel, R.; Shin, J.; and Siegwart, R. 2010. Segmentation
and unsupervised part-based discovery of repetitive objects.
Proc. of Robotics: Science and Systems.
Westin, C.-F.; Peled, S.; Gudbjartsson, H.; Kikinis, R.; and
Jolesz, F. A. 1997. Geometrical di�usion measures for MRI
from tensor basis analysis. In ISMRM ’97, 1742.
Yedidia, J.; Freeman, W.; and Weiss, Y. 2005. Constructing
free-energy approximations and generalized belief propaga-
tion algorithms. Information Theory, IEEE Transactions on
51(7):2282–2312.

