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Abstract: This paper is about assessing the quality of maps built by a mobile robot.
We extend previous work, which used solely geometric considerations, and use both
temporal and spatial properties of the map to perform a binary classification of
“plausible” and “suspicious”. The use of the former allows the existence of low
quality areas of the map to be attributed to missed loop closure events or local,
online mapping errors. With an eye on our intended domain of urban operation,
we adopt a Conditional Random Field as the probabilistic framework in which to
model the spatial and temporal relationships between planar patches. The map
quality labels are derived by using standard graph cuts optimization techniques.
The approach is then illustrated with map created of an urban environment using
data from a 3D laser range scanner mounted on a mobile robot.
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1. INTRODUCTION

Mapping an environment accurately is an important
area of research in the field of mobile robotics and
has received much attention. However, the task of
explicitly evaluating the quality of these maps has
not received much attention. Being able a assess the
quality of a map is an important problem. Firstly it
allows the value of the map to be quantified in the
light of its intended use — for example “how useful
is a map for future localization?”. Secondly, it opens
the door to planning remedial action — “this region
is poor and needs revisiting”.

However, a definition for a map quality measure can
be to a degree an abstract measure. Previous work
has made an attempt to define this abstractness
as the quality measure belonging to binary classes
– “plausible” and “suspicious”, where “plausible”
regions have well-defined, non-self-intersecting object
borders. Frameworks that implement the Markov
property has been shown to be effective in capturing
contextual information (Lafferty et al., 2001; Liao et
al., 2007; Anguelov et al., 2005; Triebel et al., 2006).
Hence the Conditional Random Fields framework has
been used to assess the quality of a given 3D point-
cloud map. The classification is performed using the
spatial property of the points. In this work, we also
consider the temporal property of the points, and
importantly do so in the same unified probabilistic
framework. The use of the temporal property suggests
causation of the low quality regions as either missed
loop closure or online mapping error.

The approach we take in this paper is to first segment
the given 3D point-cloud map into plane patches.
These plane patches are then given to a classifier to
be labelled. The problem of classification is considered

as a supervised learning problem. Hence there are two
steps namely the learning step where the classifier is
trained on manually labelled data to learn the set of
parameters and the inference step where based on the
parameters learnt, the map is classified.

This paper is divided into the following sections. A
brief description of Conditional Random Fields and
using it for binary classification is dealt with in Sec-
tion 2. Section 3 briefly describes the spatial compat-
ibility measure for completeness and introduces the
temporal compatibility measure. Section 4 describes
the steps involved in the classification of the map as
“plausible”, “suspicious” due to missing loop closure
and “suspicious” due to local online mapping error.
The effectiveness of the approach is then illustrated
using maps built of urban environments in section 5.

2. USING CONDITIONAL RANDOM FIELDS TO
DETERMINE PARTITIONS ON MAP QUALITY

In this section, the use of a Conditional Random
Field framework for the purpose of classification of
portions of a given point-cloud map is described. A
conditional random field (CRF) can be viewed as a
Markov random field globally conditioned on the ran-
dom variable representing the observation sequence
(Wallach, 2004) where a Markov random field is an
undirected graphical model which has a set of nodes
each of which corresponds to a random variable or
group of variables, as well as a set of links each of
which connects a pair of nodes (Besag, 1986; Geman
and Geman, 1984). For a detailed explanation of
CRFs please refer (Lafferty et al., 2001).

In this work, the classification is modelled as a two
stage hierarchical binary classification. The labelling
problem at each stage consists of a network of N



nodes that represent the random variable, X, over the
data sequence having the possible labels: yi ∈ {−1, 1}
represented by the random variable Y . The nodes
here are the plane patches, consisting of a subset
of points, segmented from the 3D point-cloud and
their alignment with the neighboring plane patches
constitute the edges.

The conditional distribution, p(y|x), is factorized into
a product of fully connected sub-graphs or clique
potentials φc(xc, yc, ) where c ∈ C is a clique in
the set of cliques C and xc and yc are the nodes
and its labels in that clique. The potential function
represents the constraints on the configuration or
the “compatibility” between the nodes in the clique.
When pairwise CRFs are considered each clique has
local or node potentials, φi(xi, yi) for each node i, and
pairwise or edge potentials,φij(xij , yi, yj) for an edge
between nodes i and j. The conditional distribution
can be written as

p(y|x) =
1

Z(x)

N∏

i=1

φi(xi, yi)
∏

ij∈E

φij(xij , yi, yj) (1)

where Z(x) is the partition function given by

Z(x) =
∑

y

N∏

i=1

φi(xi, yi)
∏

ij∈E

φij(xij , yi, yj)

N is the number of nodes, E is the set of edges
{ij}(i < j) in the graph, φi(xi, yi) is the node or
unary potential, φij(xij , yi, yj) is the edge or binary
potential.

Using the Hammersley-Clifford fundamental theorem
of random fields (Lafferty et al., 2001), the potential
functions can now take the form

pΘ(y|x) =
1

Z(x)
exp

( ∑
i∈N,k

µkfk(xi, yi)

+
∑

ij∈E,k

λkgk(xij , yi, yj)

)
(2)

where fk and gk are vectors of local and pairwise
features respectively and Θ = (µ1, ..., µk; λ1, ..., λk)
are the parameters or weights to be estimated from
training data. The estimation of these parameters
from the training data is the learning step when using
CRFs for the purpose of classification. Consider a
training set {x(t), y(t)} that are independently and
identically distributed. All cliques are made to share
the same parameters to reduce the amount of training
data required. The distribution in equation (2) over
all the training data as a function of the parameter
set Θ, is the likelihood given by p({y(t)}|{x(t)},Θ).
Typically, the logarithm of the likelihood is used for
estimation. The log-likelihood for a CRF is given by

L(Θ) =
∑

t

[
log

1

Z(xt, Θ)
+

∑
k

µkfk(xt, yt)

+
∑

k

λkgk(xt, yt)

]
(3)

The above function is concave and hence there is
a guaranteed convergence to the global maximum
(Wallach, 2004). Parameter estimation in CRFs is an
actively researched field and there exist various tech-
niques. In this work, the maximum psuedo-likelihood
method has been used to train the parameter set Θ.
For more details about this method, please refer (Liao
et al., 2007; Besag, 1975).

Once parameters have been estimated in the learning
step, they can be used to infer the labels of an
unlabelled data set. This is the inference step and
is done by maximizing the conditional distribution of
the labels given the feature vectors and the parameter
set. This can be written as

Y = arg max
y

pΘ(y|x) (4)

where Y is the array of labels for the nodes. Optimiza-
tions based on graph cuts (Boykov et al., 2001; Kol-
mogorov and Zabin, 2004; Boykov and Kolmogorov,
2004; Szeliski et al., 2006) are a popular method to
do this kind of maximization as they are guaranteed
to find the global maximum when binary labels are
required. Now, the compatibility measures, spatial
and temporal, used to calculate the feature vectors
fk and gk are defined in the next section.

3. COMPATIBILITY MEASURES

This section defines the spatial and temporal com-
patibility which are used to compute the node and
edge potentials in the CRF framework. The spatial
properties are used to classify the map as “plausi-
ble” and “suspicious” in a first pass. The temporal
properties are used to further identify the probable
cause of the first pass classification. In the first stage
of classification, the spatial features, xi and xij define
the vectors fk and gk or the node and edge potentials
respectively. In the second stage of classification, the
temporal features, ti and tij define the node and edge
potentials respectively. For completeness, the spatial
features introduced in (Chandran-Ramesh and New-
man, 2007) are briefly described before the temporal
features are introduced.

3.1 Using spatial compatibility

The spatial features are required to answer the ques-
tions – “is the subset of points acceptable as a plane
patch?” and “is the alignment of the plane patch
with respect to its neighbors reasonable?” To check
if a subset of points represent a plane patch, the
metrics defined should measure how accurately the
points fit a plane and whether the fitted plane is
more two-dimensional than cubic in nature. To check
if the alignment between neighboring plane patches
is reasonable, the various cases of alignments first
needs to explored. These alignments can be broadly
classified into plane patches that are parallel, those
that are not parallel, but do not intersect and those



that intersect. Of these alignments, the parallel planes
that are separated only by a small distance and the
intersecting plane patches that do not represent cor-
ners, are considered “suspicious” alignments.

The intuitive considerations are formalized as features
xi and xij given below.

xi1 =
1

1
Mi

∑Mi

j=1 d2
j→i

xi2 =
1

−→
Z .−→ni

(5)

xi3 =
Vi

Ai

where xi1, xi2, xi3 denote the spatial features of the
ith plane patch, Mi refers to the number of points in
the ith plane patch, dj→i is the distance of each point
j in the ith plane patch to plane patch fitted, Z is the
Z axis vector, ni is the normal to the ith plane patch,
Vi is the volume of the 3D convex hull fitted to the
points in the ith plane patch and Ai is the area of the
2D convex hull fitted to the points of the ith plane
patch, projected to the XY plane.

xij = 1− {Wij(ρij)× (Aij + Rij)} (6)

where xij is the feature for measuring the plausibility
of the geometry between the ith plane patch and the
jth plane patch. Wij is the weight as an exponential
function of ρij which is the closest distance between
the plane patches i and j, calculated as the shortest
distance between points in both plane patches. Aij

is the normalized overlapping area between the plane
patches i and j, when the patches are projected on
to each other and Rij is the normalized ratio of the
intersecting edges between the plane patches and is
only for intersecting planes, scoring 0 when the plane
patches are parallel. For further details and a more
thorough explanation of these features, please refer
(Chandran-Ramesh and Newman, 2007).

3.2 Using Temporal Compatibility

The temporal features are used to further classify the
“suspicious” regions of the map into the causes of
error namely, due to local mapping error and due to
missed loop closure. In areas that denote loop closure,
data has been collected by the robot at two time
stamps that are considerably apart due to the robot
revisiting the environment. This large difference in
time stamp is used to differentiate the areas requiring
loop closure from other areas. The questions that the
temporal features try to answer are – “how likely the
points in a plane patch are all part of a non-loop
closure region?” and “how likely do two neighboring
plane patches belong to non-loop closure scenario?”
This can be formalized into the node potential feature
ti and the edge potential feature tij .

The node potential requires to score how likely the
points in a plane patch come from observations with

similar time stamps and hence all belong to a non-
loop closure region. Hence the variance in time of the
points in the plane patch pi constitute the temporal
feature ti.

ti = V ar(tik) = E[(tik − µ)2] (7)

where ti is the temporal feature of the plane patch pi,
tik is the time of each point k in the plane patch and
µ is the mean time of the plane patch.

The edge potential needs to capture how likely two
neighboring plane patches are “suspicious” spatially
due to local mapping error. Alternatively, the edge
potential function requires to score how likely the
neighboring plane patches are from a missed loop
closure area. The time difference between the two
plane patches can be used to score this.

tij =
tpi − tpj

tmin
(8)

where tij is the measure of likelihood of missed loop
closure between plane patches pi and pj , tpi and tpj

are the mean time stamps of plane patches pi and pj

and tmin is the minimum time difference between any
two consecutive robot poses.

Now, with all the features defined, the steps involved
in obtaining the map quality and error causation
labels are explained in the next section.

4. ASSIGNING MAP QUALITY AND ERROR
CAUSATION LABELS

The classification problem is divided into a hierarchi-
cal approach where the regions are first classified as
“plausible” and “suspicious” and then in the second
stage the “suspicious” regions are classified as due to
missing loop closure or due to local mapping error.
Each stage is a binary classification problem, with
the algorithm finally returning three labels. In the
first stage, the two possible labels for these plane
patches are: yi ∈ {−1, 1} where −1 denotes “suspi-
cious” and 1 denotes “plausible” and in the second
stage, the two possible labels for the plane patches
are: yi ∈ {−1, 1} where 1 denotes “suspicious” due to
missed loop closure and −1 denotes “suspicious” due
to local mapping errors.

In this work, the 3D point-cloud is segmented into
plane patches consisting of a subset of points. These
plane patches constitute the nodes and their spa-
tial compatibility or the temporal compatibility with
neighboring planes patches constitute the edges.
When selecting the neighborhood for each plane, care
must be taken that enough contextual information
is provided while the computation costs of inference
and learning are not compromised. In this work, the
neighborhood system is defined as the four closest
plane patches to the current plane patch with respect
to euclidean distance within a radius of s meters.

The classification is a supervised learning problem.
Hence first the parameters, Θ need to be learnt



(a) Plan view of magnified section of map labelled
“plausible”

(b) Plan view of magnified section of map labelled
“suspicious”

(c) 3D view of magnified section of map labelled
“plausible”

(d) 3D view of magnified section of map labelled
“suspicious”

Fig. 1. Figure shows the magnified section of a map in 3D that has been classified by the algorithm. The
“plausible” portions are marked in blue and the “suspicious” portions in red. For clarity, the plan view of
this portion is also shown, above the magnified portion. In (a, c), the two plane patches are at a reasonable
distance apart. Hence the algorithm correctly labels this portion as “plausible”. In (b, d), there are two
planes that intersect, however not representing a corner. This is correctly labelled as “suspicious”.

using the training data, that has been manually
labelled, before the unlabelled map can be classified.
In this case, there are two sets of parameters, one
for each stage of classification. These are Θx =
(µx

1 , µx
2 , µx

3 ;λx
1) and Θt = (µt

1;λ
t
1) for the spatial

and temporal features respectively. Using maximum
psuedo-likelihood estimation (Liao et al., 2007), the
learning step is performed once for parameters Θx

(equations (3, 5, 6)) and once for parameters Θt

(equations (3, 7, 8)), substituting ti and tij for xi and
xij in equation (3).Once these parameters are known,
the unlabelled map can be given to the algorithm and
the labels inferred.

The input to the classifier are the plane patches that
have been segmented from the given point-cloud and
the output is the label of “plausible” or “suspicious”
due to missing loop closure or “suspicious” due to
local mapping errors, assigned to each of these plane
patches.

The steps are as follows

(1) Spatial features of the planes, xi, for each of the
N planes are calculated using equation (5)

(2) Neighborhood for each of the planes is deter-
mined as the four closest planes with respect to
euclidean distance

(3) Spatial measure of plausibility of alignment, xij ,
for each set of neighbors is calculated using
equation (6)

(4) Substituting features xi, xij and Θx in equa-
tion (2), the joint probability is maximized (refer
equation (4)) using the optimization algorithm
which returns the array of labels Y1 labelling
plane patches as “plausible” or “suspicious”

(5) The “suspicious” regions are then given to the
second stage of the algorithm and the temporal
feature, ti is calculated using equation (7)

(6) Neighborhood for each of the planes in these sub-
regions is determined as the four closest planes
with respect to euclidean distance

(7) Temporal measure of likelihood of missed loop
closure between plane patches, tij , is calculated
for each set of neighbors using equation (8)

(8) Substituting features ti, tij and Θt in equa-
tion (2), the joint probability is again maximized
(refer equation (4)) which now returns the array
of labels Y2 labelling the current set of plane
patches as “suspicious” due to missed loop clo-
sure or “suspicious” otherwise due to local map-
ping errors

(9) The two label arrays Y1 and Y2 are combined
to give the label array Y which has 3 classes
namely “plausible”, “suspicious” due to missed
loop closure and “suspicious” due to local map-
ping errors



5. EXPERIMENTAL RESULTS

In this section, the effectiveness of the above algo-
rithm is illustrated using data gathered from an urban
environment by a mobile robot. A mobile platform
equipped with a 3D SICK laser scanner was used to
capture this data. The environment chosen was that
of a typical urban environment consisting of office
buildings, roadways, foliage, railings, people, moving
cars and archways. Vehicle routes were planned to
include loops.

The 3D point-cloud map built by the mapping al-
gorithm is first segmented into plane patches using
the region growing based approach (Weingarten et
al., 2003). These plane patches are then manually la-
belled and from these, approximately 1300, 000 points
segmented into 500 planes was used in the training
step. Maximum psuedo-likelihood using the CRFtool-
box 1 was run until convergence and used to learn
both the parameter sets, Θx and Θt. On inspection of
the parameter set, it was found that the weights for
the edge features in both the spatial and temporal
stages are a factor of ten higher than the weights
for the node features. This makes the labelling more
sensitive to the alignments between plane patches,
which is desired. Using the parameters learnt, the
rest of the plane patches was given as input to the
map quality section of the algorithm. This section of
the algorithm then returned a label for each patch
as “plausible” and “suspicious”. The “suspicious” re-
gions of the map was then given as input to the second
section of the algorithm, which returned whether the
region is “suspicious” due to missed loop closure or
local mapping errors.

Figure (1) shows a magnified section of a map that
has been classified by the algorithm. The “plausible”
portions are marked in blue and the “suspicious” por-
tions in red. For clarity, the plan view of this portion is
also shown above the 3D view. In figures (1(a), 1(c)),
the “plausible” region of the map consists of a stretch
of wall on either side of the robot’s pathway. Since
these two plane patches are at a reasonable distance
apart, the classifier correctly labels this portion as
“plausible”. In figures (1(b), 1(d)), the two planes
are intersecting. However, this does not represent a
corner and it is not acceptable for two plane patches
to intersect like this. These two plane patches are
correctly labelled as “suspicious”.

Figure (2) shows a map consisting of 1444 planes that
has been classified by the algorithm. For clarity, the
plan view of this map is shown. In figure (2(a)), the
color code of blue for “plausible”, red for “suspicious”
due to local mapping error and green for “suspicious”
due to missing loop closure is used. The robot has
travelled through a typical urban environment. The
maps in this case were built using scan matching
with pose based SLAM algorithms. There are var-

1 http://cs.ubc.ca/ murphyk/Software/CRF/crf.html

ious errors in the final map such as errors due to
scan-matching and missed loop closure. It is seen
that the algorithm first classifies these inaccuracies
in mapping as “suspicious” and then classifies the
“suspicious” region caused by missing loop closure as
well. Figure (2(b)) highlights the regions that have
been labelled as ”plausible”, figure (2(c)) highlights
the regions labelled ”suspicious” due to local mapping
error and figure (2(d)) highlights the region labelled
”suspicious” due to missed loop closure.

The percentage of correct classification was found to
be 79.67%. Table (1) summarize the results achieved
in terms of a confusion matrix.

6. CONCLUSIONS

This work addresses the question of how to evalu-
ate the intrinsic quality of maps built by a mobile
robot. An CRF is used to model in a probabilistic
sense the spatial and temporal compatibility of map
components. To classify regions of the map as “plau-
sible” or “suspicious”, a two-tier bipartite segmenta-
tion is used. Given that the latter class is indicated
by improbable geometry, by considering the tempo-
ral compatibility between neighboring components of
the map (which in this instance are simply planar
patches) we can reason about the likely cause of the
poor map quality – loop closure errors or otherwise(
scan-matching) 2 . The proposed method is illustrated
using maps generated with data gathered by 3D laser
scanners moving in an urban environment. Future
work will involve modifying the algorithm to combine
the spatial and temporal compatibility into a single
step instead of the current two-tier approach.
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