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Abstract— In this paper we present an online approach
to segmenting roads on large scale trajectories using only a
monocular camera mounted on a car. We differ from popular
2D segmentation solutions which use single colour images and
machine learning algorithms that require supervised training
on huge image databases. Instead, we propose a novel approach
that fuses 3D geometric data with appearance-based segmenta-
tion of 2D information in an automatic system. Our contribution
is twofold: first, we propagate labels from frame to frame using
depth priors of the segmented road avoiding user interaction
most of the time; second, we transfer the segmented road labels
to 3D laser point clouds. This reduces the complexity of state-
of-the-art segmentation algorithms running on 3D Lidar data.
Segmentation fails is in only 3% of the cases over a sequence
of 13,600 monocular images spanning an urban trajectory of
more than 10km.

I. INTRODUCTION

Road detection is an essential and challenging task that

plays an important role for supporting advanced driver

assistance systems, such as road following or vehicle and

pedestrian detection. Moreover, the estimation of the road

geometry (slopes and borders) together with the localisation

of the vehicle are essential tasks in this context since they

aid the lateral and longitudinal control of the vehicle. On-

board vision systems [1, 2, 3] have been widely used as

they offer many advantages over other active sensors such as

Radar or Lidar (higher resolution, low power consumption,

low cost, easy aesthetic integration, and nonintrusive nature),

that allow to reduce time and computational effort.

In this paper, we propose a novel framework for seg-

menting roads from outdoor images. We combine the use of

geometric priors with statistical colour segmentation. Unlike

popular approaches, we do not make any assumptions about

the type of road, but instead assume that the road images

can be captured from an arbitrary camera orientation.

Our contribution is twofold: first, we automatically prop-

agate labels from frame to frame using depth priors of the

segmented road; second, we transfer the segmented road la-

bels to 3D laser point clouds. Figure 1 illustrates our method.

Less than 20% of the image pixels are required to initialise

multilabelling optimisation. Moreover, segmentation is only

reset in 3% of the cases over a sequence of 13,600 monocular

images spanning a trajectory of more than 10km.

II. RELATED WORK

At first glance the problem of detecting the road geometry

from visual information seems simple. However, complexity
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Fig. 1. Transfer of road labels from 2D to 3D. a) We run 2D segmentation
and propagate the labels from frame to frame on a sequence of collected
images. Time propagation of labels is performed by exploiting geometric
information: dense depth estimation is run using only a pair of sequential
monocular images. b) A dense 3D point cloud is rendered using data from
an inexpensive 2D pushbroom laser. Given the camera-laser calibration and
proper sensor synchronisation, we project the 3D point cloud onto the
corresponding frame. As a result, a label is assigned to each projected
point using the label at the corresponding pixel coordinate of the segmented
image.

is introduced as the road is imaged from a mobile vehi-

cle/camera with a constantly changing background, under the

presence of different objects like vehicles and pedestrians,

whilst being exposed to varying ambient illumination and

weather conditions. In [4] a comprehensive review of vision-

based road detection systems is presented.

A particularly difficult scenario manifests when the road

surface has both shadowed and non-shadowed areas. [2]

proposes an approach to vision-based road detection that is

robust to shadows. The approach relies on using a shadow-

invariant feature space combined with a model-based clas-

sifier. The model is built online to improve the adaptability



of the algorithm to the current lighting conditions and the

presence of other vehicles in the scene. Similarly, the work

of [1] presents a low cost approach to ego-lane detection

on illumination-invariant colour images. Interestingly, the

authors show that, employing the segmented road region as

a prior for extracting lane markings, significantly improves

the execution time and the success rate of their detection

algorithm. [3] addresses road detection within a general

dataset using a single image. The process is split into two

steps: the estimation of the vanishing point associated with

the central (straight) part of the road, followed by the

segmentation of the corresponding road area based upon that

vanishing point using a technique for detecting and refining

road boundaries.

In this paper we propose the use of per pixel inverse depth

estimates as a geometric prior for road segmentation from

a sequence of images. Our approach is similar in spirit to

[5], where self-supervised learning is achieved by combining

the camera image with a laser range finder to identify a

drivable surface area in the near vicinity of the vehicle.

Once identified, this area is used as training data for vision-

based road classification. In contrast, our approach uses

only a monocular camera to estimate dense depth maps and

propagate road labels from a previously segmented reference

image to the next observed images.

We perform dense inverse depth map estimation from a

variational method perspective. An energy function is opti-

mised based on a data fidelity term that measures the photo-

consistency over a set of small-baseline, monocular frames.

In [6] the total variation (TV) is used as a regularisation term

to preserve sharp depth discontinuities whilst simultaneously

enforcing smoothness of homogeneous surfaces. The solution

is based on a primal-dual formulation successfully applied in

solving variational convex functions that arise in many image

processing problems [7]. Unlike [6], where usually sideways

or longitudinal movements are applied to the camera in

bounded office-like scenarios, we have a forwards-facing

camera mounted on a car travelling forwards and sensing

distant objects with a low parallax. This leads us to rely

on an improved regularisation method to reinforce depth on

critical parts of the scene. In our case, a suitable assumption

is to expect to find many affine surfaces in the environment,

like roads, pathways, building facades or vehicle surfaces. In

this paper we employ a Total Generalised Variation (TGV)

regularisation [8] which has shown to favour piecewise linear

regions of a structure.

With regards to image segmentation, we find a mul-

titude of algorithms widely used for specific tasks such

as image editing, detection of interest regions in medical

images or object tracking in video sequences. The most

popular approaches try to efficiently compute minimum

energy solutions for cost functions, using graph cuts [9],

level set methods [10], random walks [11], and convex

relaxation techniques [12]. These methods combine two

important concepts in their energy models: first, a data

fidelity term that measures how well a pixel fits to each label;

second, a regularisation term that measures the consistency

of the segmentation with respect to some prior knowledge.

Examples of priors are the object boundary length, the

number of labels, specific intra-label cost functions and label

co-occurrence. In practice, all these algorithms require the

external input of a user to initialise pixels with a given label.

In this paper we use an probabilistic approach to reduce

the intra-label variability caused by different road textures

and lighting conditions.

As a second contribution, we extend current vision-based

approaches for online road registration by spatiotemporally

relating camera and laser data. We address the problem

of transferring the road labels learnt on the 2D image

sequence to 3D laser point clouds under the assumption of

perfect synchronisation and accurate camera-laser extrinsic

calibration.

The paper is organised as follows: in section III we

describe the general pipeline of our vision-based system

for road segmentation. We also explain how the depth

prior can be used to propagate labels between consecutive

frames. Section III-A illustrates our dense depth map esti-

mation approach with TGV regularisation from monocular

images. Image segmentation with spatially varying colour

distributions is introduced in III-B. In section IV we show

the mechanism to transfer labels from 2D images to large

scale 3D laser point clouds. Evaluation of our approach

over a 10km dataset is shown in V. Finally, we draw our

conclusions in VI.

III. SYSTEM DESCRIPTION

Our algorithm for road detection from multiple input

images is visualised schematically in Fig. 2. From a front-

facing camera mounted on a car we assume that we obtain

a sequence of n RGB images I1, . . . , In : Ω ⊂ R
2 7→ R

collected during a driving trial along a semi-urban environ-

ment. The corresponding camera poses T1, . . . , Tn ∈ SE(3)
are estimated in practice from our on-board scaled Visual

Odometry system [13].

Our algorithm initially creates a dense inverse depth

map ξ(u) from consecutive monocular images. Unlike other

approaches where longer sequences of images are integrated

for accurate depth map estimation, we use only a pair of

images Ik−1, Ik. This choice enables us to estimate the

depth of dynamic objects (particularly important in urban

environments), which could be potentially disregarded by

popular long sequence integration approaches. Then, we run

semi-automatic road labelling on the image reference Ik−1

where the depth map is created.

This process can be carried out by performing a simple

projection of a viewing frustum onto the ground plane using

the depth estimates of the central image pixels.

The output of this process is a labelled image ISk−1

that serves as an initial seed for a two-region segmentation.

In this step we explicitly consider the spatial variation of

colour distribution in a general Bayesian MAP estimation

approach, allowing us to deal with different textures and

lighting conditions on the road. At this point, a new image

Iφk−1
with the desired road segment is available. When a new



Fig. 2. Road segmentation with monocular images. Our algorithm initiates by creating a dense inverse depthmap ξk(u) from consecutive monocular
images. We then run automatic road labelling on the image reference where the depth map is created. We perform a simple projection of a viewing frustum
onto the ground plain, using the depth estimates of central image pixels. The output of this process is a labelled image ISk1

that serves as initial seed for

a multilabelling optimisation process. At this point, a new image Iuk−1
with the desired road segment is available. When a new image arrives, both the

background and road labels are propagated into the next frame by predicting the pixel locations. To prevent incorrect propagation of labels we carry out
morphology regularisation on pixels at the label boundaries. Finally, the output image ISk

is fed into the multilabelling optimisation process. Although
the process is implemented to run automatically, static camera motions (usually due to the fact that the car stops) can drastically affect the accuracy of the
depth map and therefore, the label prediction. To overcome this problem we provide the possibility to reset the process.

image arrives, both background and road labels are warped

into the next frame as follows:

• First, we backproject the classified pixels to 3D space

p
k
ur,ub

= π−1(ξk−1(ur,ub),K
−1) (1)

where π−1 refers to the back-projection of a pixel u

with inverse depth ξi and intrinsic calibration matrix

K.

• Then, we calculate the perspective projection of the

labelled points

hk(ur,ub) = π(pk
ur,ub

,K, Tk,k−1) (2)

• Eq.3 provides the new set of labelled pixels that will be

used as initialisation for road segmentation on image

frame Ik. To prevent the incorrect propagation of labels

owing to depth inaccuracies, we reduce the intra-label

variability by using morphology regularisation on pixels

at the label boundaries. This operation is synthesised as

ISk
= Ihk

⊖B = {w ∈ Ω|Bw ∈ Ihk−1
} (3)

where Ihk−1
is a binary image rendered from the

predicted label pixels, Bw is the translation of B by

the vector w. In practice, we assume that the structure

of B is isotropic with the centre located at the origin of

Ω.

• The resulting image ISk
is fed into the multilabelling

optimisation process producing the desired segmented

image Iφk
.

Although the process is designed to run automatically,

static camera motions (usually due to the fact that the

car stops) can drastically affect the accuracy of the depth

map and therefore, the label prediction. To overcome this

problem, we provide the possibility to reset the process when

segmentation fails. In the following sections, we review the

techniques used in the pipeline to create dense depth maps

as well as to perform multilabelling optimisation.

A. TGV Depthmap calculation

To create a depthmap ξ(u) from a pair of consecutive

images [Ik−1(u), Ik(u)] we follow a variational approach

similar to the one presented in [6]. However, in our appli-

cation we have a major constraint: our camera is mounted

on the front of a moving car and facing a distant horizon.

This means that for most of the pixels (particularly those

that correspond to distant points) we will not have sufficient

parallax. Therefore, for estimating the depth, we will have



to rely on a regulariser that should contain some prior

knowledge of the environment. In our case, a very reasonable

assumption is to find affine surfaces in the environment, such

as roads, pathways, building facades or vehicle surfaces. For

this reason, we have chosen to implement our regulariser as a

Total Generalised Variation (TGV) norm that favours piece-

wise linear solutions. The energy function to be minimised

is given by

min
ξ

ER(ξ) + ED(ξ) (4)

where ED(ξ) is a nonconvex data term that calculates the

photometric error ρ between the new image Ik(u) and a

warping of the previous one Ik−1(u)

ED(ξ) = λ

∫

Ω

ρ(Ik(u), Ik−1(u), ξ(u))du (5)

and ER(ξ) is the TGV regularisation term given by

min
ξ

∫

Ω

α1||∇ξξ − v||1 +

∫

Ω

α2||∇vv||1 (6)

By introducing an additional variable v, TGV can in-

trinsically yield a balance between the zero and first order

derivatives of the solution signal. This property allows us to

generalise the piecewise constant behaviour of the classical

TV norm and favour instead the reconstruction of piecewise

affine surfaces. The TGV regularisation term depends on two

constants α1 and α2 that control the piecewise smoothing.

Equation 6 gives us some intuition about why TGV

regularisation favours piecewise affine functions. Think of

v as the slope of ξ. If ξ is piecewise linear then v should be

a piecewise constant signal which explains the TV ||∇vv||1
penalty term for v. Regarding the first term ||∇ξξ − v||1,

if v properly estimates the slope of an affine region of ξ
then the contribution to the energy cost will be zero because

∇ξξ = v and the only cost due to the penalty term will be

the TV of v.

The optimisation problem in Eq.(4) is solved using an

iterative alternating optimisation method, explained in [6],

that is based on an exhaustive search step which involves the

data term ED(ξ), and a Primal-Dual algorithm [7] involving

the regularisation term ER(ξ).

B. Multilabel optimisation for road detection

We start by considering the reference image Ik and the

corresponding depth map ξk. At this point our task is to

split up the image into nl pair-wise disjoint regions (e.g. the

road and background):

Ω =

nl
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅, ∀i 6= j (7)

The problem is solved by assigning a label i → {1, · · · , nl}
to each pixel u, such that Ωi = {u|φi(u) = i}, where φi is

an indicator function defined as

φi(u) =

{

1 if u ∈Ωi

0 otherwise
(8)

The major challenge is to find an optimal label configuration

for all image pixels among all possible configurations. To

efficiently solve the problem we adopt a general Bayesian

estimation approach to compute the segmentation in a MAP

sense,

argmax
u

P (I|φ)P (φ) (9)

where P (I|φ) and P (φ) are the likelihood and prior proba-

bilities over the colour and region functions.

To deal with different textures and lighting conditions on

the path, we model the likelihood as

P (I|φ) =
nl
∏

i=1

∏

u∈Ωi

(P (I(u), u|φ(u) = i)) (10)

The term inside the product denotes the joint probability for

observing a colour value I at spatial location u ∈ Ωi which

can be approximated using Gaussian kernels with σ and ρ
variances on the colour and location variables respectively.

Here we use our initial seed ISk
calculated automatically

from the prediction Ihk
. In the following, we drop the index k

to keep a simple notation. Let us consider the set of points in

label i as Si := {ISi
,uSi

}. The joint probability is computed

as

P̂ (I(u), u|φ(u) = i) ∝
∑

j∈Si

kρi
(u− uSi,j)kσ(I(u)− ISi,j)

(11)

where σ and ρ are set up using spatially adaptive kernel

functions that depends on the distance to the nearest closest

point in each label. The segmentation problem in Eq. (9) also

requires the specification of a prior P (φ) over all regions. A

common choice is to use priors that favour regions of shorter

length such as:

P (φ) ∝
1

2

nl
∑

i=1

∫

Ω

g‖∇φi‖1 (12)

Eq. (12) considers the perimeter of each region measured

by
∫

Ω
g‖∇φi‖1, also known as the Total Variation of the

region represented by φ. In practice, g is a function of the

form exp(−γ‖∇I(u)‖2) typically used to promote edges. A

more general formulation of the Total Variation is
∫

Ω

g‖∇φi‖1 = max
Ψ(u)≤1

∫

Ω

g∇φ ·Ψdu(13)

where Ψ is the dual variable of region φ.

By substituting Eqs. (10-13) in Eq. (9), we arrive at the

equivalent optimisation problem with linear constraints

min
φ

max
1

2

nl
∑

i=1

∫

Ω

g∇φ ·Ψdu+ λl

nl
∑

i=1

∫

Ωi

fi(u)du (14)

s.t.

nl
∑

i=1

φi(u) = 1 (15)

fi = − log P̂ (I(u), u|φ(u) = i) (16)

Recently, [14] has shown that a suboptimal stable solution

for the multilabelling problem (and optimal for a two-region



case) can be found by introducing the Lagrange multipliers

Γ(u), such that the energy function can be rewritten as

follows:

min
φ

max
Ψ(u)≤1

1

2

nl
∑

i=1

(

∫

Ω

g∇φ ·Ψdu+ λl

∫

Ωi

fi(u)du+

(17)

+

∫

Ω

Γ(u)(

nl
∑

i=1

φi(u)− 1)du

An iterative primal dual algorithm, applied to the saddle

point formulation in Eq. (17), is summarised in the following

set of equations:

Ψ̄t+1 = Ψt + ω∇φ̄t (18)

Ψt+1 = Ψ̄t+1/max(1, ‖Ψ̄t+1‖)

φt+1 = φt − τ(∇TΨt+1 + λlf + Γt)

Γt+1 = Γt + µ(

nl
∑

i=1

φi(u)− 1)

φ̄t+1 = φt+1 + θr(φ
t+1 − φt)

where τ, ω and µ are the lengths of the gradient steps. In

practice, each variable is updated by performing pixel wise

calculations while the gradient operator ∇ is approximated

by finite differences. The parameters are set up to 1/2, 1/4
and 1/5 respectively through the use of preconditioning [14].

Analogous to the depth map estimation problem, the

primal dual approach followed in this section allows us

to take advantage of general purpose GPUs hardware for

parallel computing. For a detailed derivation of these update

equations, we refer the interested reader to [14].

IV. TRANSFER OF 2D ROAD LABELS TO 3D LASER POINT

CLOUDS

We envisage autonomous transport systems in which ve-

hicles equipped with monocular cameras and an inexpensive

2D pushbroom laser are provided with a labelled 3D laser

point cloud as a prior to support advanced driver assistance

systems. To this end, we generate metrically consistent local

3D swathes from a pushbroom laser using a subset of camera

pose estimates Tw ∈ SE3 in an active time window w as

follows:

Mi = f(Tw, TCL,xi)

where f is a function of the total set of collected laser

points xi in the same time interval, and TCL is the extrinsic

calibration between camera and laser. The transfer of labels is

carried out by re-projection of the 3D points onto the image

plane at the camera reference Tr, r ∈ w where the point

cloud is represented. A label is assigned to each laser point

from the corresponding image Iφr
using the pixel coordinates

of the projected points. Figure 3 depicts the labels propagated

over three 3D generated swathes.

V. EXPERIMENTS

In order to demonstrate the robustness and scalability

of our road segmentaiton system, we ran experiments on

an outdoor image sequence gathered from a 65 × 50 FOV

monocular camera at 25Hz. The camera was mounted on roof

of our Wildcat car looking forwards in the moving vehicle

direction. The sequence is composed of 13600 images of

resolution 512× 384 collected in a village nearby our home

town. The full trajectory is approximately 10km long from

the initial position.

The dense mapping approach as well as the multilabelling

optimisation process are implemented in CUDA C++. The

whole pipeline runs on a laptop equipped with an i7 Intel

processor at 2,3GHz and a GeForce GT 750M NVIDIA

Graphics card with 2048 MB of device memory. Figure 4

shows a time assessment of the online road segmentation.

The graph depicts the contribution of the depth map creation

(red circles) and the label propagation stages to the total

running time. The former requires 10 TGV primal dual

iterations ( less than 500ms in average) to estimate a depth

map. The second considers the label warping induced by

equations (1-3) and the primal dual iterations, run to achieve

the final segmented image. In practice, we execute less than

100 primal dual iterations during multilabelling optimisation

( 3.5s average time).

Figure 6 shows the places along the whole trajectory where

we had to reset the system. Around 172 places we restart

the roads segmentation over the total number of places (i.e

less than 3% of the time). In such cases, the running time

it is only due to the segmentation from our simple label

initialisation (projection of the viewing frustum onto ground

plane).

We expand our analysis to study the performance of the

propagation of road labels on consecutive images. We are

interested in knowing if a label can be propagated continu-

ously over long periods of time. To this end, we introduce

P (X ≤ xd), a probability that denotes how unlikely the

propagation has to be reset before a minimum distance xd. X
is defined as the travelled distance with respect to the vehicle

localisation. Figure 6 shows that, for instance, after label

propagation for more than 80m there is 95% of probability

of requiring a reset. In our case, it is very unlikely that the

system will require reset below a minimum distance of 20m.

In the supplemental material, we provide a video that

shows the extensive results running our road segmentation

on the complete sequence.

VI. CONCLUSIONS

In this paper we propose the use of per pixel inverse

depth estimates as geometric prior for road segmentation.

The presented approach uses only a monocular camera to

estimate dense inverse depth map and propagate road labels

from a previously segmented reference image to the next

observed images. A second contribution is the extension of

current vision based approaches for online road registration

by relating image-laser data spatiotemporally. We address

the problem of transferring the road labels learnt on the 2D



Fig. 3. Transfer of 2D labels to 3D point clouds rendered from an inexpensive 2D pushbroom laser. Given the camera-laser calibration and proper sensor
synchronisation, we project the 3D point cloud onto the image plane of the reference frame. As a result, a label is assigned to each projected point with
the label of the pixel at the corresponding coordinates in the segmented image. First column, deph map estimate. Second column, 2D road segmentation
on the reference image. Third column, result of the transfer to 3D point clouds.

Fig. 4. Running time per step of all associated processes. The graph
depicts the exclusive times for the depth map estimation approach (green
crosses) and the propagation of labels (red circles). Blue triangles denote
the running time in those steps in which the system was reset. In those
cases, segmentation is achieved by the simple label initialisation (projection
of the viewing frustum onto ground plane).

image sequence to large 3D laser point clouds under the

assumption of perfect synchronisation and accurate camera-

laser extrinsic calibration. Qualitative experiments on real-

world road sequences with normal traffic show that the

method is robust to shadows and lighting variations, thus

helping to preserve the road pattern over tens of kilometres.

In further research we will exploit the recurring features

that emerge from datasets where a vehicle follows the

same route more than once. We will study the case of

transferring the road labels learnt in a first journey into data

Fig. 5. Probability that denotes how likely propagation has to be reset for
a given traversed distance.

from other journeys driven at different times and varying

appearance conditions. We will study the fusion of depth map

and segmentation estimation processes into a single energy

optimisation.
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