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Abstract This paper is about dense regularised mapping using a single camera as

it moves through large work spaces. Our technique is, as many are, a depth-map

fusion approach. However, our desire to work both at large scales and outdoors pre-

cludes the use of RGB-D cameras. Instead, we need to work with the notoriously

noisy depth maps produced from small sets of sequential camera images with known

inter-frame poses. This, in turn, requires the application of a regulariser over the 3D

surface induced by the fusion of multiple (of order 100) depth maps. We accom-

plish this by building and managing a cube of voxels. The combination of issues

arising from noisy depth maps and moving through our workspace/voxel cube, so it

envelops us, rather than orbiting around it as is common in desktop reconstructions,

forces the algorithmic contribution of our work. Namely, we propose a method to

execute the optimisation and regularisation in a 3D volume which has been only par-

tially observed and thereby avoiding inappropriate interpolation and extrapolation.

We demonstrate our technique indoors and outdoors and offer empirical analysis of

the precision of the reconstructions.

1 Introduction and Prior Work

Building maps and workspace acquisition are established and desired competencies

in mobile robotics. Having “better maps” is loosely synonymous with better opera-

tion and workspace understanding. An important thread of work in this area is dense

mapping in which, in stark contrast to the earliest sparse-point feature maps in mo-

bile robotics, we seek to construct continuous surfaces. This is a well studied and

vibrant area of research. In this paper we consider this task in the context of large
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scale workspace mapping - both indoors (despite depleted texture on drab walls)

and outdoors (with a large range of scales) using only a mono-camera.

A precursor to many dense reconstruction techniques, including ours, are 2.5D

depth maps. These can be generated using a variety of techniques: directly with

RGB-D cameras, indirectly with stereo cameras, or as in our case, from a single

camera undergoing known motion.

RGB-D sensor-driven work often uses Microsoft Kinect or Asus Xtion PRO de-

vices for example [12] [23] [18] [20]. Such “RGB-D” systems provide VGA colour

and depth images at around 30 Hz, but this is at the cost of range (0.8 m to 3.5 m)

and the ability to only reliably operate indoors [2], although outdoor operation is

possible at night and with the same range limitation [19]. However, for the indoor

environments these structured light sensors can operate in, they produce extremely

accurate 3D dense reconstructions even in low-texture environments.

Stereo cameras also enable dense reconstruction but do introduce complexity

and concerns around stable extrinsic calibration to the degree that they can be cost-

prohibitive for low-end robotics applications [1]. An alternative approach is to lever-

age a sequence of mono images. In this case we do need an external method to

derive, or at least seed, accurate estimates of the inter-frame motion of the cam-

era - perhaps from an IMU-aided Visual Odometry systems or a forward kinematic

model of an arm. Note that in this work, because our focus is on the reconstruction

component, we assume that this is given and point the reader to [10] for an example

system. With the pose estimates between sequential images as a given, the depth

of each pixel can be estimated using an identical approach to that taken in creating

depth maps from stereo cameras [6] [9].

Full 3D dense reconstruction has only been demonstrated in either indoor envi-

ronments [15] or small-scale outdoor environments [22] [7]. Interestingly both these

methods rely on a fully-observed environment in which the observer orbits the sub-

ject. In an important sense and in contrast to what we shall present, these techniques

all are object-centred in situ where the camera trajectory is chosen to generate qual-

ity depth maps. In many mobile robotics applications - e.g., an autonomous vehicle

limited to an on-road trajectory - the environment observations are constrained and

suboptimal for these traditional dense reconstruction techniques.

RGB-D based reconstructions can rely on high quality depth maps always being

available. In this case, regularisation is not required since an average of measure-

ments in the voxel grid can provide visually appealing results. When using camera-

derived depth-maps, a vital and defining point is that the depth maps are almost

always noisy and ill formed in places - particularly a problem when operating in

regions where there is a dearth of texture. Accordingly, regularisation techniques

must be applied to reduce these effects - essentially introducing a prior over the

local structure of the workspace (planar, affine, smooth, etc.) [13].

In this paper, we propose a depth map fusion approach to densely reconstruct en-

vironments using only a monocular camera as it moves through large work spaces.

Given a set of noisy dense depth maps from a sub set of monocular images, we for-

mulate the 3D fusion as a regularised energy minimisation problem acting on the

Truncated Signed Distance Function (TSDF) that parametrises the surface induced
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Fig. 1 A graphical depiction (a) of how the TSDF values represent the zero-crossing surface in a
two-dimensional ‘voxel’ grid. In (b) these TSDF values are discretised into histogram bins (nbins =
5). u ∈ [−1,1] which directly maps into histogram bins with indices from 1 to nbins. There is no u

value and no histogram bin when u ≤−µ , however the nbins histogram bin includes all u > µ .

by the fusion of multiple depth maps. We represent our solution as the zero-crossing

level of a regularised cube. Our method can execute the optimisation and regulari-

sation in a 3D volume which has been only partially observed while avoiding inap-

propriate interpolation and extrapolation.

What follows is a technique that leverages many of the constructs of previous

work to achieve 3D dense reconstruction with monocular cameras but with an input

range from 1.0 m to 75 m in regions of low texture. We do this without requiring

privileged camera motion and we do it at a near-interactive rate. We begin in Sec-

tion 2 by describing how we frame the problem in the context of an implicit 3D

function, the TSDF. In Section 3, we formulate the solution of the depth map fusion

problem as a regularised energy minimisation. Section 4 explains the theoretical in-

sights which allow us to set new boundary conditions inside the cube. We present the

main steps of algorithmic solution in Section 5. Quantitative and qualitative results

on a synthetic data set rendering an indoor place, and real experiments on challeng-

ing indoors/outdoors are presented in Section 6. Finally, we draw our conclusions

and future lines of research in Section 7.

2 Construction of the Problem Volume: The BOR2G Cube

This paper is about building optimal regularised reconstructions with GPUs. Our

fundamental construct is a cube of voxels, which we refer to as the BOR2G Cube,

into which data is assimilated.

The cube model is a discretised version of a Truncated Signed Distance Function

(TSDF) u : Ω → R where Ω ⊂ R
3 represents a subset of points in 3D space and u
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returns the corresponding truncated distance to surfaces in the scene [5]. The TSDF

is constructed in such a way that zero is the surface of an object, positive values

represent empty space, and negative values correspond to the interior of objects, as

shown in Figure 1. Thus by finding the zero-crossing level-set, u = 0, we can arrive

at a dense representation of surfaces in the workspace.

Consider first the case of operating with a single depth map D, an image in which

each pixel (i, j) represents the depth di, j of the closest obstacle in space along the z

axis. We use the 4×4 homogeneous matrix Tgc ∈ SE(3) to express the depth map’s

camera position, c, with respect to the voxel grid’s global frame, g.

For each voxel, the steps to obtain u from a single depth map D are as follows:

1. Calculate the central point pg = [xg,yg,zg]
T of the voxel with respect to the cam-

era coordinate frame as pc = T−1
gc pg

2. Compute the pixel (i, j) in D in which the voxel is observed by projecting pc into

D and rounding each index to the nearest integer.

3. If the pixel (i, j) lies within the depth image, evaluate u as the difference between

di, j and the z component of pc. If u > 0, the voxel is between the surface and the

camera whereas u < 0 indicates the surface occludes the camera’s view of the

voxel.

4. Finally, linearly scale-and-clamp u such that any voxel for which u >−µ lies in

the interval [−1,1] whereas voxels for which u<−µ are left empty. See Figure 1.

In the next subsection we will explain how to fuse multiple depth images Dt

obtained at different moments in time t.

3 Depth Map Fusion

When high-quality depth maps are available, for example depth maps obtained from

a Kinect camera, data fusion can be performed by minimising, for each voxel, the

following L2 norm energy,

argmin
u

∫

Ω

N

∑
t=1

||u− ft ||
2
2dΩ (1)

where N represents the number of depth maps we want to fuse, ft is the TSDF

that corresponds to depth map Dt and u is the optimised TSDF after fusing all the

information available. Using a voxel grid representation for the TSDFs, the solution

to this problem can be obtained by calculating the mean of all the f1, ..., fN for

each individual voxel. This operation can be performed in real time by sequentially

integrating a new ft when a new depth map is available [12]. The searched TSDF

u does not require any additional regularisation due to the high-quality of the depth

maps used in the fusion.

However, when cameras are used, the depth maps obtained are of much lower

quality due, for example, to poor parallax or incorrect pixel matches. Therefore a
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more robust method is required. In [22] the authors propose an L1 norm data term,

which is able to cope with spurious measurements, and an additional regularisation

term, based on Total Variation [17], to smooth the surfaces obtained. The energy

minimised is given by,

argmin
u

∫

Ω
|∇u|1 +λ

∫

Ω

N

∑
t=1

||u− ft ||1dΩ (2)

The first component is a smoothness term that penalises high-varying surfaces,

while the second component, which mirrors Equation 1, substitutes the L2 norm

with a robust L1 energy term. The parameter λ > 0 is a weight to trade off between

the regularisation and the data terms. The main drawback with this approach is

that, unlike KinectFusion, we cannot just sequentially update the TSDF u when a

new depth map arrives, instead, this method requires to store all previous history of

depth values in each voxel. This greatly limits the number of depth maps that can

be integrated due to memory requirements.

To overcome this limitation, since by construction the TSDFs ft integrated are

bounded to the interval [−1,1], [21] proposes to sample this interval by evenly

spaced bin centres cb (see Figure 1) and approximate the previous data fidelity term

∑
N
t=1 |u− ft |1 by ∑

nbins

b=1 hb|u− cb|1 where hb is the number of times the interval has

been observed. The corresponding energy for the histogram approach is,

argmin
u

∫

Ω
|∇u|1 +λ

∫

Ω

nbins

∑
b=1

hb|u− cb|1dΩ (3)

where the centre of the bins are calculated using,

cb =
2b

nbins

−1 (4)

The voting process in the histogram is depicted in Figure 1. While this voting

scheme significantly reduces the memory requirements, allowing us to integrate an

unlimited number of depth maps, the optimisation process carried out in [21] is not

optimal. A mathematically optimal solution to this problem can be found in [11]

and has been applied to histogram-based voxel grids by [7]. Before presenting this

optimised solution in Section 5, we must introduce what we call the Ω domain.

4 Ω Domain

Since we are moving within the voxel grid and only observe a subset of the overall

voxels, we need to develop a new technique to prevent the unobserved voxels from

negatively affecting the regularisation results of the observed voxels. In order to

achieve this, as illustrated in Figure 2, we define the complete voxel grid domain as

Λ and use Ω to represent the subset of voxels which have been directly observed and

which will be regularised. The remaining subset, Ω̄ , represents voxels which have
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Fig. 2 Traditional voxel-grid-based reconstructions focus on object-centred applications as de-
picted in (a). In this scenario, the objects in the voxel grid are fully observed multiple times from
a variety of angles. Even though the internal portion of the object has not been observed, pre-
vious regularisation techniques do not make a distinction between Ω (observed regions) and Ω̄
(unobserved regions). This results in spurious interpolation inside the object. However, in mobile
robotics applications the world environment is traversed and observed during exploration, requir-
ing large voxel grids (b) which result in significant portions never being observed. For example, at
camera capture tx, it is unknown what exists in the camera’s upper field of view. Not accounting
for Ω̄ in regularisation results in incorrect surface generation. Our technique defines Λ as the voxel
grid domain while Ω is the subset we have directly observed and which will be regularised.

never been observed. By definition, Ω and Ω̄ form a partition of Λ and therefore

Λ = Ω ∪ Ω̄ and Ω ∩ Ω̄ = Ø. All works explained in the previous section rely on a

fully-observed voxel grid before regularisation and they implicitly assume that Λ =
Ω . In our mobile robotics platform, this assumption is not valid. The robot motion

results in unobserved regions caused by object occlusion, field-of-view limitations,

and trajectory decisions. Therefore, Ω ⊂ Λ as Figure 2b illustrates. In this case

Equation 3 turns into,

argmin
u

∫

Λ
|∇u|1 +λ

∫

Ω

nbins

∑
b=1

hb|u− cb|1dΩ (5)

Note that Ω̄ voxels lack the data term. As is explained in [4], this regularisation

interpolates the content of voxels in Ω̄ . Extrapolation occurs when we have unob-

served voxels surrounding an observed region. To avoid this extrapolation, we use

the Ω domain boundary conditions to constrain regularisation to observed voxels,

thus avoiding the indiscriminate surface creation which would occur when naively

applying prior techniques.
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5 Optimal Regularisation

In this section we describe the steps required to solve Equation 3 using our Ω -

domain constraint. Notice that both terms in Equation 3 are convex but not differ-

entiable since they depend on the L1 norm. To solve this, we can use a Proximal

Gradient method [4] which requires us to transform one of the terms into a differ-

entiable form. We transform the Total Variation term using the Legendre-Fenchel

Transform [16],

min
u

∫

Ω
|∇u|1dΩ = min

u
max

||p||∞≤1

∫

Ω
u∇ ·pdΩ (6)

where ∇ ·p is the divergence of a vector field p defined by ∇ ·p = ∇px+∇py+∇pz.

Applying this transformation to Equation 3 the original energy minimisation prob-

lem turns into a saddle-point (min-max) problem that involves a new dual variable

p and the original primal variable u,

min
u

max
||p||∞≤1

∫

Ω
u∇ ·p+λ

∫

Ω

nbins

∑
b=1

hb|u− cb|1dΩ (7)

The solution to this regularisation problem was demonstrated in [7] with a

Primal-Dual optimisation algorithm [4] which we briefly summarise in the follow-

ing steps:

1. p, u, and ū can be initialised to 0 since the problem is convex and is guaranteed

to converge regardless of the initial seed. ū is a temporary variable used to reduce

the number of optimisation iterations required to converge.

2. To solve the maximisation, we update the dual variable p,

p = p+σ∇ū

p =
p

max(1, ||p||2)

(8)

where σ is the dual variable gradient-ascent step size.

3. For the minimisation problem, the primal variable u is updated by,

u = u− τ∇ ·p

Wi =−
i

∑
j=1

h j +
nbins

∑
j=i+1

h j i ∈ [0,nbins]

bi = u+ τλWi

u = median(c1, ...,cnbins
,b0, ...,bnbins

)

(9)

where τ is the gradient-descent step size, Wi is the optimal weight for histogram

bin i, and bi is the regularisation weight for histogram bin i.
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4. Finally, to converge in fewer iterations, we apply a “relaxation” step,

ū = u+θ(u− ū) (10)

where θ is a parameter to adjust the relaxation step size.

Equations 8, 9, and 10 are computed for each voxel in each iteration of the op-

timisation loop. Since each voxel’s computation is independent, we implement this

as a GPU kernel which operates within the optimisation loop. The final output, u,

represents the regularised TSDF distance.

As discussed in Section 4, applying regularisation indiscriminately within the

voxel grid produces undesirable results. However, no technique to date, up to the

authors’ knowledge, provides a method to perform this regularisation within a voxel

grid.

Without loss of generality, we describe for the x component – y and z components

can be obtained by changing index i for j and k respectively – of the discrete gradient

and divergence operations traditionally used to solve Equations 8 and 9 [3],

∇xui, j,k =

{

ui+1, j,k −ui, j,k if 1 ≤ i <Vx

0 if i =Vx

(11)

∇x ·pi, j,k =











px
i, j,k −px

i−1, j,k if 1 < i <Vx

px
i, j,k if i = 1

−px
i−1, j,k if i =Vx

(12)

where Vx is the number of voxels in the x dimension.

We extend the traditional gradient and divergence calculations to account for

new conditions which remove the Ω̄ domain from regularisation. These methods

can be intuitively thought of as introducing additional boundary conditions in the

cube which previously only existed on the edges of the voxel grid. For an input

TSDF voxel grid u, the gradient ∇u = [∇xu,∇yu,∇zu]
T is computed by Equation 11

with the following additional conditions,

∇xui, j,k =

{

0 if ui, j,k ∈ Ω̄

0 if ui+1, j,k ∈ Ω̄
(13)

Note that the regulariser uses the gradient to diffuse information among neigh-

bouring voxels. Our gradient definition therefore excludes Ω̄ voxels from regulari-

sation.

Finally, in addition to the conditions in Equation 12, the divergence operator must

be defined such that it mirrors the modified gradient operator

∇x ·pi, j,k =











0 if ui, j,k ∈ Ω̄

px
i, j,k if ui−1, j,k ∈ Ω̄

−px
i−1, j,k if ui+1, j,k ∈ Ω̄

(14)
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Fig. 3 Comparison of KinectFusion (left) and BOR2G regularisation (right) methods for a 3D
reconstruction of a synthetic [8] environment by fusing noisy depth maps. As input, we use truth
depth maps with added Gaussian noise with standard deviation of σn = 10 cm. The Phong shading
demonstrates how our regularisation produces consistent surface normals without unnecessarily
adding or removing surfaces.

6 Results

To evaluate the performance of our technique, we performed three experiments

comparing our BOR2G method to a KinectFusion implementation. The dense re-

constructions are executed on a NVIDIA GeForce GTX TITAN graphics card with

2,880 CUDA Cores and 6 GB of device memory.

As a proof of concept, we first carried out a qualitative analysis of our algorithm

on synthetic data (Figure 3) before performing more robust tests with real-world

environments. The synthetic data set provides high-precision depth maps of indoor

scenes taken at 30 Hz [8]1,2. Our chosen scene considers both close and far objects

observed from the camera with partial occlusions. The input of our 3D reconstruc-

tion pipeline is a set of truth depth maps with added Gaussian noise (σn = 10 cm).

As can be seen in Figure 3, where results are represented using Phong shading,

there is a significant improvement in surface normals when the scene is regularised

with our BOR2G method compare to KinectFusion. A side-benefit of the regularised

normals is that the scene can be represented with fewer vertices. We found that our

BOR2G scenes required 2 to 3 times fewer vertices than the same scene processed

by KinectFusion.

To quantitatively analyse our BOR2G method, we conducted two real-world ex-

periments in large-scale environments. Again, we compare BOR2G and KinectFu-

sion fusion pipelines, but we generate our depth maps from a monocular camera

using the techniques described in [14]. The first represents the 3D scene reconstruc-

tion of an urban outdoor environment in Woodstock, UK. The second is a long, tex-

tureless indoor corridor of the University of Oxford’s Acland building. In both ex-

periments, we used a frontal monocular camera covering a field of view of 65◦×70◦

and with an image resolution of 512×384.

1 http://www.doc.ic.ac.uk/ ahanda/VaFRIC/index.html
2 http://www.doc.ic.ac.uk/ ahanda/HighFrameRateTracking/downloads.html
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(a) Woodstock Data Set: Comparison of Point Clouds. The KinectFusion implementation (left) pro-
duced a large range of spurious data points when compared to our BOR2G method (right). The white
vertices are truth data and the colour vertices correspond to the histogram bins in (b).

Translation Error (m)
  0 0.5   1 1.5   2

N
u
m

b
e
r 

o
f 
V

e
rt

ic
e
s
 (

1
0

3
)

 0

10

20

30

40

50

 0

10

20

30

40

Translation Error (m)
  0 0.5   1 1.5   2

N
u
m

b
e
r 

o
f 
V

e
rt

ic
e
s
 (

1
0

3
)

 0

 5

10

15

20

25

30

(b) Woodstock Data Set: Histograms of per-vertex-error when compared to laser-generated point
clouds. The KinectFusion (left) has a median error of 373 mm (σ = 571 mm) while our BOR2G
(right) method has a median error of 144 mm (σ = 364 mm). Note that the BOR2G method requires
fewer vertices to represent the same scene.

Fig. 4 Woodstock Data Set: Comparison of the KinectFusion (left) and BOR2G (right) dense re-
construction techniques. The KinectFusion has a larger number spurious outlier segments and re-
quires more than twice the number vertices to represent the structure due to its irregular surfaces.
The BOR2G method’s median and standard deviation are approximately half that of the KinectFu-
sion method.

For ground truth, we generated metrically consistent local 3D swathes from a 2D

push-broom laser using a subset of camera-to-world pose estimates TWC ∈ SE(3) in

an active time window as,

ML = f (TWC,TCL,xL)

where f is a function of the total set of collected laser points xL in the same time

interval and TCL is the extrinsic calibration between camera and laser. The resulting

3D point cloud ML is used as ground truth for our large scale assessment.

Table 1 summarises the dimensions of the volume used for each of the experi-

ments, the number of primal dual iterations, and the total running time required for

our fusion approach. The execution time for regularisation is highly correlated to
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(a) Acland Data Set: Comparison of Point Clouds. The BOR2G (right) method again outperformed
the KinectFusion implementation (left). The white vertices are truth data and the colour vertices
correspond to the histogram bins in (b).
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(b) Acland Data Set: Histograms of per-vertex-error when compared to laser-generated point clouds.
The KinectFusion (left) has a median error of 310 mm (σ = 571 mm) while our BOR2G (right)
method had a median error of 151 mm (σ = 354 mm). Note that the BOR2G method requires fewer
vertices to represent the same scene.

Fig. 5 Acland Data Set: Comparison of the KinectFusion (left) and BOR2G (right) dense recon-
struction techniques. Note that the laser truth data was only measured depth data for the lower-half
of the hallway. This results in the spurious errors for the upper-half where our depth maps pro-
duced estimates but for which there was no truth data. These errors dominate the right tail of the
histograms in (b). As with the Woodstock data set, the BOR2G method’s median and standard
deviation are approximately half that of the KinectFusion method.

the size of the Ω space because regularisation is only performed on voxels within

Ω . Figures 4 and 5 show a comparison between the ground truth and the 3D recon-

structions obtained using the BOR2G and the KinectFusion methods. To calculate

our statistics, we perform a “point-cloud-to-model” registration of the ground truth

with respect to our model estimate3. The key statistics comparing the methods are

precisely outlined in Table 2. For both scenarios, our BOR2G method was roughly

two times more accurate than KinectFusion. Finally, Figure 6 shows the obtained

continuous, dense reconstructions of the indoor and outdoor environments.

3 http://www.danielgm.net/cc
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Table 1 Timing Results of BOR2G regularisation on an NVIDIA GeForce GTX TITAN graphics
card. For the configuration parameters, only the volume’s dimension changed, but the number of
voxels (and hence memory requirements) remained consistent between experiments.

Experiment Voxels Vol. Size (m) Iterations Reg. Time (s) Memory (MB)

Woodstock 5123 6×25×10 100 11.09 640 MB

Acland 5123 4×6×30 100 11.24 640 MB

Table 2 Error analysis comparing KinectFusion and BOR2G methods. The BOR2G error is
roughly half that of KinectFusion.

Experiment Median Error (m) Standard Deviation (m)

Woodstock (KinectFusion) 0.3730 0.5708

Woodstock (BOR2G) 0.1441 0.3636
Acland (KinectFusion) 0.3102 0.5708

Acland (BOR2G) 0.1508 0.3537

7 Conclusions

In this paper we presented a new approach to reconstruct large-scale scenes in 3D

with a moving monocular camera. Unlike other approaches, we do not restrict our-

selves to object-centred applications or rely upon active sensors. Instead, we fuse

a set of consecutive mono-generated depth maps into a voxel grid and apply our

Ω -domain boundary conditions to limit our regularisation to the subset of observed

voxels within the voxel grid.

Our BOR2G method results in a median and standard deviation error that is

roughly half that produced when using the same depth maps with the KinectFusion

method.

In the future, we plan to use the Ω -domain principles to apply new boundary

conditions which select portions of the voxel grid for regularisation. These subsets

will be selected based on scene-segmentation heuristics. For example, we can ex-

tend the Ω domain to include enclosed “holes” which will result in the regulariser

interpolating a new surface. Alternatively, we could remove a segment from Ω to

prevent regularisation of a scene segment which was better estimated in the depth

map (e.g., high-texture object).
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Fig. 6 The final 3D reconstruction of the large scale experiments using BOR2G with the Acland
building (left) and Woodstock, UK (right).
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