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Abstract The estimation of dense depth maps has become a fundamental module in the
pipeline of many visual-based navigation and planning systems. The motivation of our
work is to achieve fast and accurate in-situ infrastructure modelling from a monocular
camera mounted on an autonomous car. Our technical contribution is in the application of
a Lagrangian Multipliers based formulation to minimise an energy that combines a non-
convex data term with adaptive pixel-wise regularisation to yield the final local reconstruc-
tion. We advocate the use of constrained optimisation for this task. We shall show it is swift,
accurate and simple to implement. Specifically we propose an Augmented Lagrangian (AL)
method that markedly reduces the number of iterations required for convergence with more
than 50% of reduction in all cases compared to the state-of-the-art approach. As a result,
part of this significant saving is invested in improving the accuracy of the depth map. We
introduce a novel per pixel inverse depth uncertainty estimation that allows us to apply
adaptive regularisation on the initial depth map: high informative inverse depth pixels re-
quire less regularisation, however its impact on more uncertain regions can be propagated
providing significant improvement on textureless regions. To illustrate the benefits of our
approach, we ran our experiments on three synthetic datasets with perfect ground truth for
textureless scenes. An exhaustive analysis shows that AL can speed up the convergence up
to 90% achieving less than 4cm of error. In addition, we demonstrate the application of the
proposed approach on a challenging urban outdoor dataset exhibiting a very diverse and
heterogeneous structure.

1 Introduction

The creation of dense workspace models from cameras alone has long been a focus of
robotics research. The mapping task is sometimes seen in a limited light as simply a pre-
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cursor or at best dual for localisation. When maps were simply sparse collections of points 1

this narrow perspective was reasonable. But robots that can, through their own motion, pro-
duce dense reconstructions offer a new vista for autonomous and semi-autonomous plant
inspection. But to do so the reconstruction process must be rapid allowing in-situ formation
of the dense scene structure. This paper is about precisely that competency - creating dense
depth maps rapidly.

Recent work has made clear the potential of variational methods in producing dense
volumetric reconstructions of small workspaces under controlled lighting conditions [13,
10, 6]. In [13] the authors address the problem as a depth map estimation from a set of
keyframes with corresponding camera poses obtained from a PTAM system. An energy
function is optimised based on a data term that measures the photoconsistency over a set
of small-baseline images, as well as total variation (TV) based regularisation term. This
preserves sharp depth discontinuities due to occlusion boundaries, while simultaneously
enforcing smoothness of homogeneous surfaces. The problem is stated as the minimisation
of an energy functional comprising both terms by using an alternation scheme with a good
initial seed. A similar approach is adopted in [10]. In this case, the solution relies on a
primal-dual formulation successfully applied in solving variational convex functions that
arise in many image processing problems [4]. Despite the non-convex nature of the energy
functional for the depth map estimation, the authors provide theoretical insights to decouple
the terms leading to a two-stage optimisation. Their solution is based on the application of
the well known Quadratic Penalty (QP) method firstly introduced in [15] in the context of
optical flow estimation with a similar energy formulation. In contrast to [13], an efficient
cumulative discrete cost volume is considered to compute one of the terms allowing a robust
initialization of the depth map before the optimisation. While [13] avoids an exhaustive
point-wise search to find a minimum solution, [10] provides strategies that accelerate the
search while achieving good accuracy. A different approach was introduced in [6]. Instead
of optimising depth maps, a different energy functional over a 3D volume is formulated
using a primal-dual algorithm for the minimisation. The authors use an implicit truncated
signed distance function (TSDF) representation to compute the globally optimal fusion
using a (TV regularised) convex energy. Then the surface is extracted by finding the zero
level set of the accumulated TSDF. As input, the minimisation receives initial depth map
estimates that are not required to be highly-accurate.

Despite these energy minimisation approaches reach soft real-time performance, their
application to active tasks such as planning and obstacle avoidance is critical. For instance,
in [2] the authors follow a DTAM based approach to estimate dense depth maps for live
collision avoidance of a MAV. Their analysis shows that online generation of each depth
map requires usually 900 primal dual iterations to converge with an estimated final error of
10cm, requiring a significant time of 500ms for this task. More recently the works of [5, 1,
8] introduce the use of the Augmented Lagrangian (AL) in the field of video restoration and
general image inverse problems. As first paper contribution, we demonstrate the efficacy
of the Augmented Lagrangian method [3] for dense depth map creation using monocular
cameras which at the time of writing was the first time this had been done. Our experiments
show that AL method dramatically reduces the number of iterations (more than 50% )
required for the decoupling approach adopted in [10].

A second contribution lies in our consideration of how to progress from an initial guess
to a final solution. In particular we need to reinforce pixels in the seed solution containing

1 as in early SLAM formulations
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plausible depth estimates and propagate its effect over those pixels with less accurate depth
estimates. We advocate that large texture-less areas of the RGB images produce noisy and
often grossly misleading meaningless regions in the initial depth map that greatly impede
successful optimisation. We propose a inverse depth uncertainty estimation to calculate
per-pixel adaptive confidences that aid the trade-off between the data fidelity term and the
regularisation term. This provides a novel approach that affords us a principled way to only
seed the optimisation with pixels from regions which should yield reliable depth estimates.
Furthermore, we offer an illustrative study of the effect of three different photo-consistency
measures. Our motivation is to understand the degree to which each affects final solution
accuracy because each determines an initial seed solution for the optimisation.

In section 2 we briefly review the approach presented in [10] to build an initial depth map
from monocular frames. Dealing with non-convex data terms requires careful attention,
thus section 3 is devoted to explain the so often used Quadratic Penalty method and the
proposed Augmented Lagrangian method. How to estimate per-pixel depth uncertainties
for adaptive regularisation is introduced in section 4. An evaluation of the precision and
convergence of the complete approach on monocular synthetic datasets with perfect Ground
Truth is described in 5. Also, we demonstrate the application of the proposed approach on
challenging urban outdoor dataset exhibiting a very diverse and heterogeneous structure.
Finally, we draw our conclusions in section 6.

2 Building an Initial Seed

As in [10], to obtain an initial depth map for our optimisation algorithm, we build a cost
volume Cr that accumulates, for a uniformly sampled set of inverse depths ξ j, j = 1 : d,
the photo-consistency error of overlapping images. The reason for using an inverse depth
representation being that a uniform discretisation of ξ produces a uniform sampling of
epipolar lines in an image.

Figure 1 shows a 2D top view of the process used to initialise each voxel of the cost vol-
ume. Given a pixel ui ∈ u in a reference image Ir and an inverse depth ξ j the corresponding
pixel in a neighbouring image Ik ∈ I(r), where I(r) is the set of images that overlap with Ir,
is given by the warp

wk(ui,ξ j) = π(Tkrπ
−1(ui,ξ j)) (1)

where π(x) describes a perspective projection of a 3D point x, π−1(ui,ξ j) is the back-
projection of a pixel ui with inverse depth ξ j and Tkr ∈ SE(3) is the relative transformation
between cameras corresponding to images Ik and Ir.

We have studied the effect of different photo-consistency measures in the accuracy of
depth map estimates. In particular, we have tested, for different window sizes W , the Sum of
Squared Differences (ρSSD), the Sum of Absolute Differences (ρSAD) and the Normalised
Cross Correlation (ρNCC) which are described in table 1.

The average photometric error Cr(ui,ξ j) for all images Ik ∈ I(r) and for each inverse
depth ξ j is given by:

Cr(ui,ξ j) =
1
|I(r)| ∑

k∈I(r)
ρ
∗
i j(Ik,ui,ξ j) (2)
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Table 1 Similarity metrics

Metric Definition Equation

Sum of Square Distances ρSSD
i j ∑i∈W‖Ir(ui)− Ik(wk(ui,ξ j))‖2

Sum of Absolute Distances ρSAD
i j ∑i∈W‖Ir(ui)− Ik(wk(ui,ξi))‖1

Normalized Cross Correlation ρNCC
i j

∑i∈W Ir(ui)Ik(wk(ui,ξi))√
∑i∈W I2

r (ui)∑i∈W I2
k (wk(ui,ξi))

Fig. 1 This example illustrates the process of building the “data fidelity” term for our energy minimisation
problem. A discretised cost volume is built to accumulate the photo-consistency error: for each pixel ui in a
reference image frame Ir , we back-project the pixel along a discrete set of inverse depth distances ξ j in the
interval [ξmax ξmin] obtaining the 3D pose for the centre of each voxel in the cube. Then each voxel centre
gets projected into the current image frame (Ik,ck) and we compare the corresponding intensities according
to a predefined similarity metric ρ∗i j . The results of these comparisons are stored in the corresponding cells.
This process is repeated for all overlapping image frames Ik ∈ I(r). The final average minimum cost is
calculated according to Eq.(2). This calculation is achieved by inducing an exhaustive search in the cost
volume. The corresponding per-pixel initial inverse depthmap is associated with the voxel at the minimum
cost rendering a surface as illustrated with the red curve.

where |I(r)| is the number of images that overlap with Ir and ρ∗i j represents the chosen
similarity metric.

Once the cost volume is computed, an inverse depth map ξr(u) over the whole set of
pixels u can be recovered by searching for the minimum cost for each pixel:

ξr(u) = argmin
ξ j

Cr(u,ξ j) (3)

Since ξr(u) is usually noisy, it will be used as initial seed for the optimization algorithm
explained in the next section. Without loss of generality and to improve readability, we will
drop the subindex r and will refer only to ξ and C in the remaining of the paper.
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3 Dealing with non-convex data terms

In this section we show how we can improve the initial crude depth map using search over
a regular partitioning which replaces the so called ”winner-takes-all approach” described
in Eq.(3). The searched solution ξ (u)∗ minimises the energy functional:

min
ξ

E(ξ ) =
∫

Ω

w(u)||∇ξ (u)||ε+λC(u,ξ (u))du (4)

where Ω∈R2 is the depth map domain, w(u) is a per pixel weight based on Ir gradient that
reduces the effect of regularization across image edges, ||∇ξ (u)||ε is the Huber norm and λ

is a parameter used to define the trade-off between the regulariser and the data term. After
discretising the domain Ω, a depth map is redefined as the set ξ = [. . . ,ξi j, . . .]. Therefore,
we can express the previous equation as:

min
ξ

ER(ξ )+λED(ξ ) (5)

where ER(ξ ) is the regularisation term and ED(ξ ) is the data term that corresponds with
the information stored in the cost volume. In order to solve Eq.(5), we will make use of the
iterative Primal Dual optimisation algorithm presented in [4]. This algorithm requires both
the regulariser and the data term to be convex, however ED(ξ ) is not a convex function.
One solution to this problem is to decouple both terms and solve instead the following
equivalent constrained optimisation

min
ξ ,η

ER(ξ )+λED(η)

s.t. ξ = η

(6)

The advantage of the decoupling approach is that it allows us to independently solve for
the regulariser term using convex optimisation methods and for the data term using a sim-
ple exhaustive search in the cube. Obviously, both problems are in fact coupled by the
constraint. In the following subsections we will discuss the main possible solutions of the
previous constraint optimisation problem: The Quadratic Penalty (QP) and the Augmented
Lagrangian (AL) whose numerical implementation is illustrated in Algorithm 1. The inter-
ested reader can find a more detailed discussion of these and more general techniques for
constraint minimisation in [3].

3.1 Quadratic Coupling Penalty

We briefly describe the algorithm proposed in [10] in order to obtain an improved ξ (u)∗
depth map solution from the initial seed in eq. 3. This approach is based on eliminating
the constraints through the use of a coupling penalty function. Popularly a simple quadratic
penalty function suffices. Using this approach, Eq.(6) is minimised by sequentially solving
an unconstrained minimisation problem of the form
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Algorithm 1 ξ = EnergyMinimisation(η ,θ ,ε,α)
1: {Initialization of variables:}
2: τ,σ > 0,γ ∈ [0, 1],θ ∈ [0, 1]
3: {For each pixel ij}
4: ξ 0

i j = ηi j,p0
i j = 0

5: ξ̄i j = ξ 0
i j

6: while t ≤ N do
7: {Update Dual}

8: pt+1
i j =

pt
i j+σwi j∇ξ̄ t

i j
1+σε

9: pt+1
i j = pt+1

i j /max(1, |pt+1
i j |)

10: {Update Primal}
11: ξ

t+1
i j = (ξ t

i j + τwi j∇ ·pt+1
i j + τ

θ t η t
i j− τα t

i j)/(1+
τ

θ
)

12: {Relaxation}
13: ξ̄

t+1
i j = ξ

t+1
i j + γ(ξ t+1

i j −ξ t
i j)

14: η
t+1
i j = SubpixelSearch(ξ t+1,θ ,C,λ ,α t )

15: α
t+1
i j = α t

i j +
1
θ
(ξ t+1

i j −η
t+1
i j )

16: end while

Algorithm 2 η = SubpixelSearch(ξ ,θ ,C,λ ,α)
1: {Accelerated search:}
2: r =

√
2θλ (Cmax

i j −Cmin
i j )

3: {Exhaustive search for ηi j ∈ [ξi j− r,ξi j + r]}
4: ηaux

i j = argminηi j
1

2θ
(ξi j−ηi j)

2 +λCi j(ηi, j)+αi, j(ξi, j−ηi, j)

5: {Subpixel refinement:}
6: ∇Eaux = λ∇Ci j(η

aux
i j )+

ηaux
i j −xii j

θ
−αi j

7: ∇2Eaux = λ∇2Ci j(η
aux
i j )+ 1

θ

8: ηi j = ηaux
i j −∇Eaux/∇2Eaux

min
ξ ,η

ER(ξ )+
1

2θ
‖ξ −η‖2

2+λED(η) (7)

where E(ξ ,η)→ E(ξ ) as θ → 0. In general, the main disadvantages of this approach,
reported in [3], are its slow convergence and ill-conditioning for small values of θ . Nev-
ertheless, for the depth map estimation problem, this algorithm has shown an admirable
performance in practice. Note that Lagrange multipliers play no direct role in this method.
The new energy functional in eq. 7 allows us to split the minimisation into two different
problems that are alternatively solved until convergence:

• First, for a fixed η solve:

min
ξ

ER(ξ )+
1

2θ
‖ξ −η‖2

2 (8)

which corresponds to the well known TV-ROF convex denoising problem that can be
solved using a primal-dual algorithm [4]. In this case η represents a noisy image whereas
ξ is the searched denoised result.

• Second, for a fixed ξ solve:
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min
η

1
2θ
‖ξ −η‖2

2+λED(η) (9)

this optimisation is performed by a point-wise exhaustive search followed by an accel-
erated subpixel refinement for each η in the cost volume as it is explained in [10]. We
show a general implementation of the primal dual solution along with the sub-pixel re-
fining steps in Algorithms 1 and 2. Lines 6-16 illustrate the main iterative per-pixel
primal dual algorithm. Line 9: ascend gradient step to update the dual variable p. Line
11: descend gradient step to update the primal variable ξ . The parameters τ and σ are
calculated via preconditioning [11].

3.2 Lagrange Multipliers

We must now briefly mention the role of Langrange Multipliers as a precursor to our use
of the “Augmented Lagrangian” in the next section. The original constrained optimisation
Eq.(6) can be transformed to an unconstrained minimisation problem by introducing the
Lagrangian function

ER(ξ )+α
T (ξ −η)+λED(η) (10)

where α is a Lagrange multiplier associated with the original constraint. In this approach
the Lagrange multiplier is treated on an equal basis with the variables ξ ,η , which means
that in order to solve the unconstrained problem we have to iterate as well for α . Although
there exist different methods to iteratively update ξ ,η , α and solve the Lagrangian equa-
tion, we are going to concentrate on the Augmented Lagrangian method explained in the
next subsection.

3.3 Augmented Lagrangian

The Augmented Lagrangian belongs to a class of methods called methods of multipliers
in which the penalty regularization is combined with the Lagrange Multipliers method.
The resultant objective function, called the Augmented Lagrangian, is sequentially mini-
mized to obtain a solution to the original constrained problem. In our case the augmented
Lagrangian is given by

ER(ξ )+α
T (ξ −η)+

1
2θ
‖ξ −η‖2

2+λED(η) (11)

The main advantages of this method over the previous ones are: First, convergence can be
attained even when θ does not decrease to zero improving the stability of the algorithm.
Second, there exists a simple update of the Lagrange Mulltiplier α that tends to make it
converge faster to its proper value than pure Lagrange Multipliers approaches [3].

As in the Quadratic Penalty section, Eq.(11) is minimized by alternatively solving the
following sub-problems until convergence

• First, for a fixed η solve:



8 Pedro Piniés, Lina Maria Paz, and Paul Newman

(a) scene 1 (b) scene 2 (c) scene 3

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

Depth Index

N
or

m
al

is
ed

 C
os

t

 

 

High TV measure
Low TV measure

(d) σg = 0.0684, σr = 1
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(e) σg = 0.0668, σr = 1
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(f) σg = 0.0760, σr = 1

Fig. 2 Adaptive selection of λ . To weight the contribution of each pixel in the data term, we estimate
the uncertainty of the depth represented as a Gaussian distribution on the cost along the inverse depth
range, with mean centred in the depth for which the cost is minimum. First row shows the pixel-wise
uncertainty overlapping the reference image for three synthetic datasets. Green crosses represent examples
of highly informative pixels ug, while red crosses determine pixels ur with more uncertainty. Second row
shows variability of the cost along 64-discrete inverse depth index values for the two examples. The fitted
Gaussian is illustrated for the green case.

min
ξ

ER(ξ )+α
T (ξ −η)+

1
2θ
‖ξ −η‖2

2 (12)

using a primal-dual algorithm [4] since the previous optimization is convex in ξ

• Second, for a fixed ξ solve:

min
η

α
T (ξ −η)+

1
2θ
‖ξ −η‖2

2+λED(η) (13)

using a point-wise exhaustive search for each η in the cube.
• Third, update α

α = α +
1
θ
(ξ −η) (14)

In contrast to the Quadratic Penalty method, we have introduced the new variable α .
Although it implies a change in the numerical implementation, the iterations required for
convergence are substantially reduced as we will show in section 5. In particular, it affects
the update of the primal variable ξ (line 11 in algorithm 1) as well as the accelerated
search and smoothing step for sup-pixel accuracy (algorithm 2, lines 4 and 6). For better
readability, we have highlight in red color the differences between the QP and AL numerical
implementations. Notice that the changes between both algorithms are minimal.
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Fig. 3 Median error obtained after optimisation on three different synthetic scenes. For each similarity
metric (SAD, SSD, NCC), the plots show the optimal window size to achieve the minimum error. In general,
NCC yields more accurate results on all datasets (see the scale of y-axis).

4 Adaptive Regularisation

In this paper we also exploit the concept of the uncertainty on the inverse depth to reinforce
regularisation on non-informative depth map regions. Regularisation plays an important
role in achieving highly accurate depth-maps in small scenes. However, depending on the
quality of the metric used as well as the initial depth seed, the effect of the regularisation
does not necessarily provide a positive impact on the final solution. The lack of texture in
some regions of the scene (blank walls, texture-less surfaces, ...) generates in fact a non-
informative cost along the volume. Figure 2 bottom shows, for two different pixels ug and
ur in the reference image, the corresponding set of cost values store in the cube along the
inverse depth interval [ξmax ξmin]. Notice that the 1D cost functions present a low or high
variability depending on whether the pixel belongs to a texture-less region ur (flat walls,
floor, roof, ...) or to an informative one ug. For each pixel ui ∈ u in the reference image, we
can estimate the inverse depth uncertainty using the following second order approximation,

(15)C(ui,ξ ) ∼ C(ui,ξ
∗) + (ξ − ξ

∗)∇C(ui,ξ )|ξ=ξ
∗ +

1
2

∇
2C(ui,ξ )|ξ=ξ

∗(ξ − ξ
∗)2

where C(ui,ξ
∗) represents the minimum cost along the sampled distances. Figure 2 bot-

tom, shows the quadratic approximation of the cost function at a particular pixel. Note that
the quadratic is naturally centred at the sampled depth ξ ∗ at which the cost is minimum.
To associate uncertainties with per-pixel inverse depth estimates we look at the curvature
of the correlation surface, i.e., how strong the minimum in the cost volume is at the win-
ning inverse depth [14]. Under the assumption of small noise, photometrically calibrated
images, and densely sampled inverse depth, the uncertainty is approximated by a normal
distribution synthesised as follows

ξ (ui)∼N (ξ ∗(ui),Σξ ) (16)

where the variance is locally estimated by the hessian Σξ ∝ 1/∇2C(ui,ξ )|ξ=ξ
∗ in the in-

verse depth point where the cost is minimum. Eq.(15) allows us to calculate a per-pixel
adaptive trade off λ (u) between the data fidelity term and the regularisation depending on
the quality of the information in the initial depth map.
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Table 2 Convergence Analysis for AL and QP
Scene 1, range = [1.655 3.445] [m]

Median Error [m] Energy ‖ξ −η‖2 % iter saved
Metric AL QP AL QP AL QP
SAD 3 0.0111 0.0107 3283.77 3233.44 0.0452 0.0500 57 %
SSD 3 0.1084 0.1459 1288.70 1342.70 0.0466 0.0130 74 %
NCC 7 0.0038 0.0032 26081.11 27804.42 0.0480 0.0497 63 %

Scene 2, range = [1.102 6.186] [m]
Median Error [m] Energy ‖ξ −η‖2 % iter saved

Metric AL QP AL QP AL QP
SAD 1 0.0549 0.0551 8278.24 8317.93 0.0426 0.0456 66 %
SSD 5 0.2264 0.2821 8141.76 8383.51 0.0406 0.0236 72 %
NCC 7 0.0467 0.0488 49449.81 49356.62 0.0462 0.0496 55 %

Scene 3, range= [0.773 5.953] [m]
Median Error [m] Energy ‖ξ −η‖2 % iter saved

Metric AL QP AL QP AL QP
SAD 5 0.0037 0.0043 11410.13 11456.60 0.0460 0.0190 84 %
SSD 11 0.0092 0.0089 2594.75 2577.19 0.0482 0.0098 90 %
NCC 5 0.0032 0.0032 75876.31 75601.43 0.0423 0.0433 67 %

Analysis of Errors, Energy convergence and constraint fulfill at the final solution for both the Augmented
Lagrange (AL) and the Quadratic Penalty (QP) methods using different similarity measures to obtain the
initial seed.

λ (ui) ∝
1

Σξ

(17)

Figure 2 top, shows the output image that results after the calculation of the per pixel
variance for three synthetic indoor datasets. Notice that the reference image is overlapped
for better interpretation.

5 Results

5.1 Evaluation on Indoor Synthetic Datasets

We have conducted our experiments on three synthetic indoor scenes that provide high
precision depth maps from images taken at 30Hz [7, 9]23. Our chosen scenes consider
both close and far objects from the camera and partial occlusions. We first evaluate the
influence of the similarity metric used to obtain the initial solution. Recall that the metrics
under evaluation are the SSD, the SAD and the NCC. After executing the AL optimisation
algorithm for each metric, we calculate the median error of the depth-map solution with
respect to the ground truth. In order to compare the accuracy of AL and QP algorithms we
will calculate:

cost(u) = median(‖ξ (u)GT −ξ
∗(u)‖1) (18)

Figure 3 shows for all scenes the median errors obtained for window sizes ranging in the
interval W = [1 . . .15]. This preliminary analysis shows that, for the correct window size,

2 http://www.doc.ic.ac.uk/ ahanda/VaFRIC/index.html
3 http://www.doc.ic.ac.uk/ ahanda/HighFrameRateTracking/downloads.html
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Fig. 4 Convergence and Accuracy Analysis for the proposed Augmented Lagrangian (AL) method in com-
parison to the common Quadratic Penalty (QP) approach. The experiments are shown for three synthetic
scenes: left, scene 1; middle, scene 2; right, scene 3. First row, ground truth depth map. Second row, Initial
seed obtained with a NCC-based cost volume at the optimal window size as reported in table 2. Third row,
achieved depth-map solution. Fourth row, energy evolution over all iterations. Fifth row, evolution of the
constraint ‖ξ −η‖2 per iteration. Notice that AL (black solid line) outperforms QP (blue light line) to con-
verge at the final solution. Energy is evaluated at the ground truth (GT) which constant value is displayed
with a red line. Sixth row, boxplots of the error distributions of the per pixel inverse depth map estimates.
The tops and bottoms of each box are the 25th and 75th percentiles of the samples, respectively. The dis-
tances between the tops and bottoms are the inter-quartile ranges. The line in the middle of each box is the
sample median. AL and QP achieve high accurate depth-maps with similar error distributions. However,
AL achieves the final solution faster than QP.
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the NCC measure achieves the best results. This can be a consequence of the NCC in-
variance to illumination changes. Since the NCC is usually costly to evaluate we can also
see that the SAD even with a window size of 1 performs relatively well and can be used
in case of computation constraints. ”Median Error” column in table 2, shows for the AL
and QP algorithms the lowest median errors obtained for all similarity measures at their
optimal window size. Observe that NCC produces the best results and that the QP and AL
algorithms produce similar accurate estimates.

We also studied the convergence properties of the AL and QP algorithms described in the
paper. In order to obtain a fair comparison, we have applied the same stop criteria to both
methods: First, the relative decrease in the energy minimization has to be below a given
threshold (to assure we can not make much progress) and second, the equality constraint
is considered to be fulfilled if ‖ξ −η‖≤ 5e− 2 . Figure 4 shows the energy evolution for
both algorithms using NCC with optimal window size for the initial seed. In two of the three
synthetic scenes (Fig. 4 second,third column) both methods converge to similar final energy
and constraint values. Notice that, in the limit, ξ and η must achieve the same values, thus
the decouple energies for AL and QP should approximate very well the original energy in
equation 4. However, the most important advantage of the AL method, which is one the
contributions of this paper, over the QP method is its faster convergence requiring fewer
iterations to achieve the same result. In figure 4, second row, we observe how the quadratic
constraint decreases rapidly for AL and so the energy falls to its minimum value. Table
2 column nine, shows the gain percentage of AL with respect to the number of iterations
required for QP. The proposed approach requires 50% less iterations till convergence for
all cases. Fig. 4, sixth row, shows the histogram of the errors for AL and QP. Note that the
accuracy of the solution is not traded for speed.

5.2 Dense reconstruction of outdoor scenes

Our goal is to show that the AL method in combination with adaptive regularisation im-
prove the appearance of the point cloud capturing the diverse shapes present in outdoor
environments. Our motivation is that while a sparse map provides a compact representation
for autonomous navigation, higher level robot tasks can require denser maps to improve
scene understanding. We have a forwards-facing camera mounted on a car travelling for-
wards and sensing distant objects with a low parallax. This leads us to rely on an improved
regularisation method to reinforce depth on critical parts of the scene. In our case, a suit-
able assumption is to expect to find many affine surfaces in the environment, like roads,
pathways, building facades or vehicle surfaces.

The input to our pipeline consists of only two consecutive image frames gathered by a
camera at 25Hz. This choice enables us to estimate the depth of dynamic objects (particu-
larly important in urban environments), which could be potentially disregarded by a long
sequence integration. The sensor is mounted on a car that traverses a city environment.
Figure 5, shows the reconstruction of three different scenes with heterogeneous geome-
try (walls, roads and vegetation). To track the camera, we employ our own scaled Visual
Odometry system [12].

Figure 5 first row, shows the per pixel inverse depth uncertainty. As it is expected, road
surfaces and distant regions exhibit low information. The use of the per-pixel adaptive
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Fig. 5 3D reconstruction of outdoor scenes from monocular images. The use of Adaptive regularisation
improve the appearance of the point cloud capturing the diverse shapes present in the environment. First
row, pixel-wise depth uncertainty. Second row, Inverse depth map obtained after 30 primal dual iterations.
Third-fifth rows, different camera views of the final 3D dense reconstruction.

regularisation allows us to recover most of the structure. A video showing more details of
the execution of the algorithms is available at (http://youtu.be/LrNv9QCKH1s).
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6 Conclusions

We have shown the efficacy of the Augmented Lagrangian method for depth map esti-
mation using monocular cameras. As a result we can substantially reduce the number of
iterations required for convergence, more than 50% of reduction in all cases, compared to
state of the art algorithms based on Quadratic Penalty methods. We have also performed an
exhaustive study of different photo-consistency measures SSD, SAD and NCC and differ-
ent windows sizes in order to improve the accuracy of the initial depth map used as seed in
the optimisation algorithm. As was expected, NCC provides the best results due to its in-
trinsic properties to cope with illumination changes. Finally, we introduce a novel per pixel
inverse depth uncertainty estimation that allows us to apply adaptive regularisation on the
initial depth map: high informative inverse depth pixels require less regularisation, however
its impact on more uncertain regions can be propagated providing significant improvement
on textureless regions.
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