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Abstract—This paper describes a rapid on-line system able
to compute the semantics of outdoor scenes using dense stereo
perception. Our main focus is to aid a robot to discover
collision-free routes as an alternative to explore the environment
during fall-back planning (localiser failure). The general scene
understanding problem is formulated in a probabilistic frame-
work that combines machine learning with continuous convex
regularisation. In order to learn distinctive scene labels, our
system relies on shallow classifiers in combination with a suite of
contextual features derived from depth and colour cues. The pro-
posed system is heterogeneous taking advantage of simultaneous
GPGPU and multithreaded CPU to carry out important tasks
such as dense depth map estimation, multi-labelling prediction
and image segmentation. Extensive experiments on the KITTI
dataset support the robustness of out system to derive collision-
free local routes. An accompanied video validates the system at
live execution in an outdoor experiment with a wheeled robot
exploring over hundreds of metres of trajectory.

Supplementary material: https://youtu.be/nvlAf4B-mFY

I. INTRODUCTION

A fundamental task for a mobile robot is the ability to find

and follow drivable or collision-free paths. In this paper, we

propose a vision-based system that, via a variational approach,

is able to segment and label semantically distinctive parts of

the local scene including paths through it. Our motivation,

beyond the obvious case of autonomous exploration, is the

creation of a safety-net process which in the temporary ab-

sences of a localiser can still execute a safe and coherent path

through its workspace. Figure 1 illustrates our approach for a

single image frame.

Our system integrates different modules including dense

local mapping, semantic label prediction, image segmentation,

route calculation and robot control. A stereo camera is used

as the primary sensing modality in this paper. Stereo cameras

can provide an inexpensive and reliable means of sensing the

environment for a robot at true scale if appropriately fast

reliable processing schemes are deployed. Over the years,

novel theoretical foundations of continuous optimisation [1],

[2] and machine learning [3], [4] for image analysis, upon

which the most advanced algorithms rely, have become ac-

cessible for robotics and computer vision applications. In

addition, the continuous development in parallel computing

allows us to build systems that can respond in soft real

time. Our algorithm for path discovery works in outdoor

environments taking advantage of multiple, complementary

depth and colour cues. We use these cues in a multi-label
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Fig. 1: Our approach combines the use of a shallow classifier with
convex relaxation in a multi-labelling problem to obtain semantically
segmented images. Given the labels describing drivable regions, we
deliver collision-free local routes to the robot controller. Top, a seg-
mented image with the plausible path. Bottom, a dense representation
of the local scene with the path to be executed.

image segmentation approach. The problem is formulated in a

probabilistic framework that combines machine learning with

convex regularisation. In order to learn distinctive scene labels,

we rely on shallow classifiers such as Random Forests (RF)

[5]. This choice is driven by the intrinsic property of the

RFs as low variance classifiers. As a result, they provide

better generalisation by preventing from the undesirable over-

fitting problem. In addition, RFs explicitly allow us to model

pixel-wise label probabilities with frequentist inference [6].

Moreover, RFs can easily adapt themselves to architectures

supporting parallel computing and multi-threading to rapidly

predict the per-pixel label probabilities. We summarise our

contributions as follows:

• We demonstrate the ability of our system to run con-

tinuous optimisation at two different tasks in reasonable

execution times –i.e. dense depth map estimation and

multi-labelling image segmentation.

• We derive plausible routes by analysing the image seman-

tics corresponding to drivable regions (e.g. road, ground).

We analyse the ability of RFs to combine multiple features

leading to a further increase in performance when colour

and depth features are used simultaneously. We show how

our system can rapidly obtain the required semantics – and

therefore paths– at VGA resolution. Extensive experiments

on the KITTI dataset support the robustness of out system

https://youtu.be/nvlAf4B-mFY


to derive collision-free local routes. An accompanied video

supports the robustness of the system at live execution in

an outdoor experiment with a wheeled robot exploring over

hundreds of metres of trajectory.

II. RELATED WORK

Over the past few years, there has been an increasing

development of path-following algorithms. Many of these

algorithms are not necessarily adaptive. Some rely on prior

knowledge of specific visual characteristics such as lane mark-

ers or road boundaries of the road surface [7], [8] or their

geometric structure using complementary sensor modalities

such as LIDAR [9], [10]. Other approaches employ supervised

learning techniques to learn to recognise a desired class of

roads by exploiting colour cues unique to the road surface in

combination with segmentation algorithms [11].

In this paper, we take advantage of the two frameworks by

combining dense local geometry and image colour cues. We

note, however, that our ultimate goal is to find a drivable path

with no assumption of any particular structure – i.e, no lane

or border information is used as prior. Therefore, we deliver

only collision-free paths that are suitable for pure exploration,

fall-back planning (localiser failure) and off-road applications.

The focus of much of our work is the development of a

path-following algorithm using scene understanding through

image segmentation. Common approaches use information

from dense stereo maps with Conditional Random Fields

(CRFs) [12] or Convolutional Neural Nets (CNNs) [13], [14]

to obtain a reasonable image segmentation – at the expense

of higher computational cost to predict the per-pixel labels.

A good assumption is that many scenes are a composite of

vertical surfaces –e.g. buildings, vehicles, pedestrians– w.r.t

the horizontal ground –e.g., road and sidewalk– with possible

parts of the sky [13]. Analogously, we model the appearance

of the ground using cues at pixel–level, such as colour and

texture, together with contextual information from dense depth

maps – in fact, they play an important role in our image

segmentation task. In this work, because we require realtime

performance, and in contrast to [13], [14], we use a shallow

classifier rather than a deep classifier [15] to provide the data

term into a down stream semantic regularisation formulated as

continuous convex relaxation.

III. SYSTEM OVERVIEW

Our intermediate (but welcome) goal is to provide per-pixel

semantics for the simple application of exploration with a

mobile robot at near real time. To this end, we design a system

consisting of several tasks running in a multi-thread process

as illustrated in Figure 2. Each left and right image of the

stereo pair Ilr, is processed in a parallel task to estimate a

dense depth map ξ . In this paper we extend the approach

presented in [16] –whose solution relies on continuous energy

minimisation– to estimate stereo depth maps. Such approach

exploits the use of the Augmented Lagrangian (AL) method to

accelerate the convergence of the primal-dual algorithm. The
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Fig. 2: Scene understanding pipeline for collision-free route follow-
ing. The system considers different modules running in a main CPU
multiple thread process. Stereo pairs are first processed in a dense
depth map estimation task. In parallel, several CPU threads can
process the rectified images to extract different colour and depth
contextual feature channels. A different task is used to train our
shallow Random Forest. During online mode, the output of the
Random Forest produces the predicted per-pixel label probabilities.
A new task uses this information to produced a regularised image
segmentation. Given the image segmentation solution, we analyse
the ground label and extract a feasible path. Finally we send the path
to the robot controller.

algorithm supports per-pixel calculations, therefore allowing

us to run the task on an available GPU.

Simultaneously, several CPU threads process the left image

to extract different features channels Z consisting of colour

Zrgb, location Zloc, filter-banks Z f and depth-context features

Zξ .

The channels are received by a different task in charge of

training our shallow Random Forest. During on-line mode,

the output of the Random Forest produces per-pixel u prob-

abilities PT(u ∈ Li|zu) of u belonging to a set of labels

Li, i ∈ {1, . . . ,K}) where K is the number of labels. A

final task uses this information to estimate the regularised

image segmentation. Analogous to the depth map estimation

task, we run the regularisation on the same GPU. Given the

segmentation solution, we analyse the ground label and extract

a feasible path. Finally we send the path to the robot controller.

IV. PREDICTING LABELS WITH A RANDOM FOREST

A Random Forest (RF) is a popular machine learning

method for classification and regression, which consists of an

ensemble of decision trees Tj, j ∈ {1 · · ·T} with predefined

tree depth dT. It has been shown that combining separate

decision trees to form a forest improves performance of

prediction and prevents over-fitting [5]. In our RF, each tree

Tj is trained individually. We follow the classical construction

of the decision tree as a deterministic procedure. In order to

prevent having identical trees, our trees are trained on different

set of per-pixel features Z using a bootstrap procedure. For

each tree, the same number of pixels as in the original set

is randomly selected by sampling with replacement. As a

result, some feature samples may appear several times, while

some others could be absent. In addition, we randomly select

features in each node inducing several node searching splits.

Figure 3 illustrates this process.
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Fig. 3: The RF classifier uses per-pixel features derived from colour
and depth cues. Given a new pixel sample z, each tree classifies it
in a different leaf. Each leaf saves a histogram modelling the class
distribution over the samples.

A. Scene Features

A set of feature channels is used in order to obtain in-

formative information about the scene by applying various

transformations on the colour and depth map images. Let

zu ∈ Z be a per-pixel feature vector defined as

zu =
[

zT
rgb zT

loc zT
f zT

ξ ] (1)

where zrgb comprises an illumination invariant transform

zill inv and a rg-chromaticity transform zrg−chroma applied over

the rgb pixel channels. zξ is represented by two contextual

transforms over the depth: first, the height of the 3D back-

projection of the pixel w.r.t the ground zhg; second, the vertical

disparity gradient zvg. In addition, we estimate the distance

from the pixel to the horizon line zloc. Finally, we use the

Leung-Malik (LM) filter bank z f , a collection of Gaussian and

Laplacian of Gaussian filters at various scales and orientations

to represent the local texture.

B. Estimation of label distribution

The probability PT(u ∈ Li|zu) of a pixel u belonging to a

particular label Li is the result of a voting strategy. For each

tree in the forest Tj, a subset of the components of the feature

vector zu are compared at each node to a given threshold θ .

The comparison determines the next branch to follow until a

leaf node is reached. As can be seen in Figure 3, histograms

learnt during the training phase are stored at the leaves of the

trees. For a given tree, the histograms contain the number of

pixels per label in the training set that end up in that leaf.

These histograms aim to approximate the probability PTj
(u ∈

Li|zu). During on-line mode, the label distribution of a test

pixel is given by the average of the histograms stored at the

corresponding leaf of each tree in the forest:

PT(u ∈ Li|zu) =
1

T

T

∑
j=1

PTj
(u ∈ Li|zu) (2)

V. REGULARISATION VIA CONVEX RELAXATION

With the initial per-pixel classification results in hand,

greatly improved results can be obtained by formulating the

complete image segmentation as a labelling problem with

a global energy function that balances “smoothness” of the

labelled segments (a prior) and per-pixel probabilities (a data

term) coming from the random forest. The energy function is

given by:

min
Ωi

{

1

2

K

∑
i=1

Per(Ωi)+
K

∑
i=1

∫

Ωi

fi(u)du

}

(3)

s.t. Ω =
K
⋃

i=1

Ωi, Ωi ∩Ω j = /0, ∀i 6= j

where Ω ∈ R
2 represents all the pixels in the image assigned

to K disjoint regions Ωi (e.g. ground, vegetation, obstacles and

sky).

In Eq.(3) the data term is given by the sum of the

costs of the unary potentials fi(u) = − log(PT(u ∈ Li|zu))
per segmented region Ωi. The intuition behind fi(u) is that

when pixel u belongs to region Ωi with a high probability

(PT(u ∈ Li|zu) ≈ 1) the cost added is negligible ( fi(u) ≈ 0),

on the contrary, low probabilities produce an increasingly

unbounded cost. The main effect of the smoothness term is

to reduce the perimeter of the regions Per(Ωi) such that it

tends to smooth the boundary between neighbours and delete

small regions surrounded by bigger ones. In order to obtain a

more convenient expression of the energy for optimisation we

represent each region instead by its indicator function:

φi(u) =

{

1 if u ∈Ωi

0 otherwise
(4)

The energy function in Eq.(3) can then be described by:

min
φi(u)

{

1

2

K

∑
i=1

∫

Ω
|∇φi(u)|du+

K

∑
i=1

∫

Ω
φi(u) fi(u)du

}

(5)

s.t. φi(u) ∈ {0,1},
K

∑
i=1

φi(u) = 1

where
∫

Ω |∇φi(u)| is the Total Variation (TV) of the indicator

function φi(u) that can be shown to be equal to the perimeter

of the segment.

The constraint φi(u) ∈ {0,1} makes the problem combina-

torial and NP-hard so it can only be approximately solved. We

use a known fast relaxation approach [17] that transforms the

original problem into a convex one. While this relaxation is not

the tightest, it produces good results in practice. The relaxation

is based on allowing φi(u) to take values in the interval
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Fig. 4: Analysis of the performance of several RF-based classifiers
for parameter selection. We carried out an exhaustive search in a 2-
dimensional array representing the parameter space domain. For each
parameter configuration (number of trees, tree depth), we train the
classifier and evaluate its average F1-score.



φi(u) ∈ [0,1]. Since in addition we know that ∑
K
i=1 φi(u) = 1,

the constraint can be relaxed to:

φi(u)≥ 0, ∀i (6)

as a result, Eq.(5) becomes a convex optimisation problem.

Unfortunately the energy cost is non-smooth due to the

L1 norm that appears in the TV term. The Legendre-Fenchel

Transform [18] allows us to trade the non-smoothness of the

prior term for a smooth convex constrained maximisation:

∫

Ω
|∇φi(u)|du = max

Ψi(u)

∫

Ω
∇φi(u) ·Ψi(u)du (7)

s.t. |Ψi(u)|2,1 ≤ 1 (8)

where Ψi(u) : Ω →R
2 is known as the dual function of φi(u).

Although this transformation seems to apparently increase the

complexity, the counterpart is that we can now use well known

first order methods available for smooth problems to find the

global solution of the relaxed energy.

As explained below, we can easily deal with the box

constraints given in Eqs.(6, 8) by projecting the solution of the

optimisation at each iteration to the feasible set when it fails

to meet the constraints. The equality constraint ∑
K
i=1 φi(u) = 1

can be included into the energy by introducing Lagrange

Multipliers Γ(u). The relaxed problem to be solved is then:

min
φi(u)

max
Ψi(u),Γ(u)

{

1

2

K

∑
i=1

∫

Ω
∇φi(u) ·Ψi(u)du+

K

∑
i=1

∫

Ω
φi(u) fi(u)du

+
∫

Ω
Γ(u)

(

K

∑
i=1

φi(u)−1

)

du

}

(9)

s.t. φi(u)≥ 0, |Ψi(u)|2,1 ≤ 1

To solve the convex saddle point problem in Eq. (9) an

iterative primal dual algorithm [1] is applied. Basically we just

need to interleave gradient ascent steps for the maximisations

with gradient descent steps for the minimisation at each

iteration of the algorithm. In both cases we project the solution

to the feasible set in case the box inequality constraints are

not met. Therefore at each iteration t and per each label Li we

perform the following steps:

• Maximising Ψi(u):

Ψ̃t+1
i = Ψt

i +σ∇φ̄ t
i gradient ascent

Ψt+1
i =

Ψ̃t+1
i

max(1, |Ψ̃t+1
i |2,1)

projection to feasible set

• Minimising φi(u):

φ̃ t+1
i = φ t

i − τ(∇T Ψt+1 + fi +Γt
i) gradient descent

φ t+1
i = max(0, φ̃ t+1

i ) projection to feasible set

• Maximising Γ(u):

Γt+1 = Γt +µ

(

K

∑
i=1

φ t+1
i −1

)

gradient ascent

• Over-relaxation:

φ̄ t+1 = φ t+1 +θr(φ
t+1 −φ t)

where σ ,τ and µ control the step size of the gradient steps.

In practice, each variable is updated by performing pixel wise

calculations while the gradient operator ∇ is approximated

by finite differences. The parameters are set up to 1/2,1/4

and 1/5 respectively through the use of preconditioning [19].

The last over-relaxation step allows faster convergence of

the algorithm with 0 ≤ θr ≤ 1. Analogous to the depth map

estimation problem, the primal dual approach followed in this

section allows us to take advantage of general purpose GPU

hardware for parallel computing. For a detailed derivation of

the update equations, we refer the interested reader to [19].

VI. EXPERIMENTS
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Fig. 5: Impact of the feature channels over the performance before
(green) and after (blue) multi-label regularisation. In all cases,
the smoothed solution outperforms the RF-classifier solution. Much
worse results are obtained when depth features are left out.

Fig. 6: Illustration of the collision-free algorithm to extract a route
from the ground label.

This section provides quantitative results for experiments

carried out over two different datasets. Our heterogeneous

pipeline (CPU/GPU) was tested in two different hardware

architectures whose details are summarised in Table I. In

addition, we show qualitative results from a live experiment

carried out in an outdoor environment. Our experiments con-

sider a parameter selection analysis as well as an assessment



TABLE I: Hardward architectures

Architecture OS Processor Graphics Card

Server Ubuntu 14.01 Intel(R) Core(TM) i7 CPU @ 3.50GHz GeForce GTX TITAN Black, 6144 MB 2880 CUDA Cores
Laptop OSX Mavericks Intel(R) Core(TM) i7 CPU @ 2.3GHz Geforce 750M, 2048 MB, 384 CUDA Cores

TABLE II: Recall, precision and F1 score for different RF models

Ground Obstacle Vegetation Sky

Channels Recall Precision F1 Score Recall Precision F1 Score Recall Precision F1 Score Recall Precision F1 Score

KITTI Dataset

91.83 87.41 89.56 69.59 65.03 67.23 57.24 63.65 60.27 98.20 98.20 98.20
Zξ 91.40 87.23 89.27 82.36 70.28 75.84 58.27 76.58 66.19 93.36 97.39 95.34

57.29 53.25 55.20 66.49 59.72 62.93 65.98 79.15 71.97 62.89 60.02 61.42
Z\Zξ 69.38 63.16 66.12 76.86 70.05 73.30 77.20 92.21 84.04 61.03 79.58 69.08

89.49 89.75 89.62 83.56 72.00 77.35 66.68 79.70 72.61 93.86 98.52 96.13
Z\ zvg 91.28 89.77 90.52 90.71 79.56 84.77 75.74 91.88 83.03 86.80 98.43 92.25

71.03 74.24 72.60 78.63 66.36 71.97 66.16 78.60 71.85 58.40 66.86 62.35
Z\ zhg 80.66 89.84 85.01 90.66 76.79 83.15 78.78 91.71 84.76 60.00 82.38 69.43

90.45 90.46 90.46 82.91 73.98 78.19 69.04 78.64 73.53 93.59 98.50 95.98
Z\ zillinv 92.61 90.78 91.68 92.89 79.73 85.81 73.99 93.10 82.45 88.53 98.49 93.24

90.34 90.26 90.30 83.35 73.64 78.19 68.77 79.37 73.69 92.44 98.08 95.17
Z\ zloc 92.02 91.92 91.97 91.37 82.47 86.69 79.18 91.74 85.00 88.84 98.21 93.29

90.62 89.94 90.28 82.41 72.63 77.21 66.58 77.85 71.77 96.33 98.31 97.31
Z\ zrg−chroma 92.71 90.99 91.84 91.18 81.78 86.22 77.35 90.98 83.62 89.06 98.26 93.44

90.49 91.01 90.75 82.65 75.04 78.66 70.61 78.81 74.48 97.58 98.28 97.93
Z\ z f 92.45 92.20 92.33 91.02 82.67 86.64 78.87 91.29 84.63 92.17 96.87 94.46

89.62 90.80 90.20 84.67 72.07 77.86 65.68 79.66 72.00 95.32 98.42 96.85
Z

92.01 92.32 92.17 91.13 82.24 86.46 78.60 91.34 84.49 90.61 97.32 93.85

Keble College Dataset (Full Resolution)

Z 99.10 94.90 96.95 89.06 93.22 91.10 78.02 98.68 87.14 — — —

Keble College Dataset (VGA Resolution)

Z 98.48 94.55 96.48 86.65 94.13 90.24 73.96 98.71 84.56 — — —

We compared the impact of the channels over the performance before (white rows) and after (gray rows) applying regularisation. For a better analysis,
we show the independent precision-recall and f1 score per label. The first column describes the channels used for training. For instance, Z indicates that
all channels have been used, while Z \ z∗ means that a particular channel has been left out. zillinv is the illumination invariant transform, zrg−chroma is
the rg-chromaticity transform, zξ is represented by two contextual transforms over the depth. zhg is the height of the 3D back-projection of the pixel
w.r.t the ground. zvg is the vertical disparity gradient. zloc the distance from the pixel to the horizon line. z f are the Leung-Malik (LM) filter bank z f .

TABLE III: Average Running time per task

Task Server (ms (Hz)) Laptop (ms (Hz)) CPU Threads

Depth map estimation 190 ms (5.26 Hz) 1180 ms (0.85 Hz) 1
Feature Extraction 25 ms (40 Hz) 22 ms (45.45 Hz) 14
Label Probability prediction 10 ms (100 Hz) 6 ms (166 Hz) 10
Label Regularisation 155 ms (6.45 Hz) 1020 ms (0.98 Hz) 1
Route calculation ≈ 5 ms (200 Hz) ≈ 5 ms (200 Hz) 1

that guides the importance of the feature channels over the

RF-based dataterm. Additionally, we make a comparison of

predicted labels before and after label regularisation.

A. Quantitative experiments

In order to evaluate the proposed image segmentation ap-

proach, we make use of a subset of the KITTI dataset for

which ground truth is provided [20]. The dataset consists of 60

stereo pairs at resolution 1241×376 with perfect annotations

for 12 semantic class labels and ground truth depth maps. For

the purpose of our evaluation, we synthesise the annotations

into ground, vegetation, obstacles and sky. In this case, we

employ 50% of the images for training and 50% for cross-

validation. An additional dataset was collected and manually

labelled, Keble College dataset, consisting of 65 stereo frames

at high resolution (1280×960). Optimised depth maps are also

provided with centimetre accuracy.

1) Parameter selection for RF-based dataterm: The accu-

racy and computational complexity of our RF-based dataterm

depends on two major parameters: the maximum tree depth

and the number of trees in the forest. In order to choose

the best parameters, we analyse their impact over the RF

performance. For the KITTI dataset, we carry out an exhaus-

tive search in a 2-dimensional grid representing the parameter

domain. For each parameter configuration (number of trees,

tree depth) we train a model. Figure 4 shows the average F1

score on the configuration space of parameters over 200 RF

models. Although the performance can be optimised to find

the maximum score, we found that a classifier consisting of

5 trees and 10 tree levels provides a good trade off between

performance and speed.

2) Contribution of feature channels: Our assessment also

takes into account the contribution of each feature channel to

the overall performance. We calculate the precision, recall and

F1 score for different models. Table II details this values per

label. An important part of the evaluation is to measure the

impact of the depth channels (i.e, zξ ). Moreover, we emphasise

the importance of each depth channel by leaving one channel

out at a time (e.g, Z \ zhground). This test is also applied to

the colour channels allowing us to find strong features by

observing whether or not the performance drops significantly

when a particular channel is missing. Figure 5 summarises

this information showing the average F1 score for the KITTI

dataset. Note that the overall performance significantly de-



(a) KITTI Dataset

(b) Live experiment

Fig. 7: Qualitative results of the path following approach. We first
evaluated the collision-free approach in different scenarios. In some
situations the ground segment extends in front of the robot, thus our
algorithm succeeds to find a route to control the robot forwards. There
are situations where obstacles, such as, cars are present. We show that
in those cases, our approach provides collision-free paths. When the
ground segment is small – for example when the robot reaches a
wall– the estimated path can only provide one or no points. In this
case, the robot performs pure rotation until it finds a ground region
for which a plausible path can be estimated.

creases when the depth channels are not considered. In fact,

a model that uses only depth channels performs better than

a model using the rest of the channels. We can also see that

texture features do not appreciably affect the performance.

Table II provides information about the accuracy achieved

per label. For instance, when only depth channels are used, the

ground and the sky labels already exhibit high accuracy. This

is not surprising if we consider that these labels are associated

to very distinctive depths. In contrast, the accuracy obtained

for the obstacle and vegetation labels when just depth channels

are used is lower as there is much higher variability in their

depth.

3) Prediction labels before and after regularisation: Table

II and Figure 5 indicates the difference between the perfor-

mance of the models before and after applying regularisation.

Note that in all the cases, the regularised solution outperforms

the RF-classifier solution.

4) Running Time: Many of the tasks involved in our

pipeline can run in real time. Table III summarises the running

times per task for the two testing architectures. All images are

at VGA (480×640) resolution. Despite stereo depth estimation

and label smoothing require more time than other tasks, the

frame rates are still acceptable to provide reliable paths at live

execution.

B. Live outdoor experiments

For our live outdoor experiment we use a Clearpath Husky

UGV equipped with a forward-facing PGR Bumblebee2 cam-

era. In order to provide reliable collision-free paths, we

implement an algorithm that analyses the ground label in

a bottom-up direction. Figure 6 illustrates the process. The

algorithm tessellates the ground label in cells with adjustable

dimensions. Note that each cell contains only a sub-region of

the segmented label. For each cell, we calculate the centre of

mass. This simple strategy allows us to consider the shape

and orientation of the drivable regions. All the points with

valid centre of mass are concatenated together to form the

desired path. In addition, we impose a safety margin over the

robot dimensions. The robot is modelled as a circular object

of 1.5 meters of diameter. Each feasible point of the circle

is projected into the segmented image. We check for possible

collisions if the projection intersects other labels. The path is

back-projected to 3D space using the available depth map and

the intrinsic camera parameters. For simplicity, our controller

assumes a differential platform such that the path is executed

with a constant linear velocity of 1 m/s. The angular velocity

is derived from the path segments.

The collision-free path approach has been tested in different

scenarios. Figure 7 shows qualitative results on the KITTI

dataset and on our live experiment with a robot moving

autonomously in a quad along hundreds of meters. When

the ground segment extends in front of the robot and there

are no obstacles, the algorithm succeeds to find the simplest

route possible and plans to move the robot forwards following

a straight line. When obstacles such as cars are present,

our approach is able to over take the obstacles following a

collision-free path. Finally, when the ground segment in front

of the robot is not big enough – for example when the robot

reaches a wall– no path can be provided. In this case, the

robot performs a pure rotation until it finds a ground region

for which a plausible path can be estimated. More details

of our approach working at live execution is provided in the

supplementary material https://youtu.be/nvlAf4B-mFY.

VII. CONCLUSIONS

In this paper, we presented a general framework that com-

bines a light weight (shallow) image classifier with convex

regularisation for the general problem of image scene under-

standing. While recent approaches rely on the use of complex

and deep classifiers, we demonstrate that a random forest can

inform our variational formulation with very reliable label

probabilities. In fact, our system requires small amounts of

data during the training phase and yet produces high accurate

results during testing. Finally, we showed that our system is

remarkably fast to provide semantics from image data allowing

a mobile robot to discover and drive collision-free traversable

paths.
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