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Abstract. This paper is about robot ego-motion estimation relying solely on
acoustic sensing. By equipping a robot with microphones, we investigate the pos-
sibility of employing the noise generated by the motors and actuators of the ve-
hicle to estimate its motion. Audio-based odometry is not affected by the scene’s
appearance, lighting conditions, and structure. This makes sound a compelling
auxiliary source of information for ego-motion modelling in environments where
more traditional methods, such as those based on visual or laser odometry, are
particularly challenged. By leveraging multi-task learning and deep architectures,
we provide a regression framework able to estimate the linear and the angular
velocity at which the robot has been travelling. Our experimental evaluation con-
ducted on approximately two hours of data collected with an unmanned outdoor
field robot demonstrated an absolute error lower than 0.07 m/s and 0.02 rad/s
for the linear and angular velocity, respectively. When compared to a baseline
approach, making use of single-task learning scheme, our system shows an im-
provement of up to 26% in the ego-motion estimation.

Keywords: ego-motion estimation, sound-based odometry, deep learning, multi-
task learning, acoustic sensing

1 Introduction

This paper explores the possibility of modelling a robot’s ego-motion, relying only on
acoustic sensing. Specifically, we employ the robot’s ego-noise (i.e. the noise produced
by the motors and actuators while generating motion) to make estimates on the vehicle’s
velocity. Optical sensors and lasers have commonly been employed to perform this task,
as they are able to provide accurate pose estimates, by also overcoming the shortcom-
ings of wheel odometry, such as error calculation during wheel slippage (e.g. [1,2]).
The performance of Visual Odometry (VO) systems are still challenged, though, by en-
vironments characterised by moderate lighting conditions or, more generally, scarcity of
textures. On the other hand, laser odometry might struggle in degenerated scenes where
planar areas are prevalent. Auditory perception is resilient to the scene’s appearance: a
property which would be particularly convenient in environments lacking structure and
illumination, or in which distractions are intense. For instance, extreme scene move-
ment could be misinterpreted as movement of the robot, and acoustic signals could be
used to perform consensus checking and resolve the ambiguity. In this perspective, we



envision acoustic sensing as an auxiliary source of information, on the side of more tra-
ditional odometry methods, for the development of more robust ego-motion estimation
systems. Building on such premises, in this work we introduce and evaluate a frame-
work to estimate a robot’s ego-motion, using exclusively the ego-noise produced by the
vehicle and recorded by the on-board microphones. Following on from recent studies
that exploit deep learning for visual and laser odometry estimation [3, 4], we model
the vehicle’s odometry using a deep neural network (DNN). In particular, we leverage
regression analysis, and, similarly to the modelling strategy adopted by [5] for camera
relocalisation, we apply a multi-task learning scheme. Unlike that work, however, we
do not regress the robot’s poses directly, but the linear and the angular velocity at which
the robot has been travelling. We evaluate our system on approximately two hours of
data collected at the University Parks in Oxford, UK.

To the best of our knowledge, this is the first work investigating robot ego-motion
modelling employing solely the acoustic features of the ego-noise of the vehicle to
estimate its velocity through a state-of-the-art regression framework.

2 Related Work

For long time, robot audition has mainly concerned the development of human-robot
interaction frameworks (e.g. [6]). More recently, the robotics community has started
investigating auditory perception in a wider perspective. A method to augment au-
tonomous vehicles with the capability of detecting the presence of anomalous sounds
(e.g. the siren of an emergency vehicle) has been introduced in [7]. Acoustic event clas-
sification in a domestic environment has been explored in [8]. In all these instances the
robot’s ego-noise has been examined as a limitation to the systems’ performance, as in-
troducing additional task-unrelated components to the acoustic scene, making its inter-
pretation more challenging. Yet, robot ego-noise carries significant information which
could be exploited, both for environment understanding and self-modelling. The use
of ego-noise to perform terrain classification has been proposed in [9]. Sound-based
self-localisation and ego-motion estimation have been approached in [10] and [11].
The former combines orientation estimates from inertial measurement unit (IMU) ob-
servations and audio-based distance estimation to localise a snake robot moving in a
pipe. The latter proposes a classification framework to associate ego-noise to a set of
predefined velocity profiles. Our work shares the aspirations of [11], while presenting a
substantially different approach to velocity estimation. Rather than encoding the robot’s
motion into profiles known a priori, we propose a regression model able to provide, at
any point in time, the current velocity of the vehicle. The resulting system will, con-
sequently, be more flexible, and, as not relying on predefined behaviours, inherently
more robust to changes in the environment leading to potential unexpected modifica-
tions in the robot’s motion. Furthermore, we investigate the possibility of using auditory
features to estimate the angular velocity of the vehicle, laying the foundations for the
development of an audio-only ego-motion estimation system.



3 Technical Approach

Our regression analysis makes use of a deep neural network, which given as input a
feature representation of the robot’s motion sound, provides estimates both for the linear
and angular velocity of the vehicle. A description of the features employed is presented
in Section 3.3, while a more detailed illustration of the deep architecture utilised is
delineated in Section 3.2.

3.1 Preliminaries

Our framework relies on the use of VO (cf. Section 1) to generate the true values of
the velocities we employ to train our deep network. Visual odometry computes esti-
mates of the robot’s pose from a set of camera images by analysing the variations on
those images generated by the motion of the vehicle. Different approaches and imple-
mentations have been proposed in the literature (for a review, see [12]). In this work,
we utilise a stereo VO pipeline which makes use of a combination of FAST [13] cor-
ners and BRIEF descriptors [14], and applies RANSAC [15] for outlier rejection. The
ego-motion is, then, computed by non-linear least squares optimisation. VO provides
6DoF pose estimates. In this case, as the motion of the robot is actually restricted to
the ground plane, its pose is fully described by two translational components and one
rotational component, which we use to compute the velocities.

3.2 Architecture

Our regression system is based on a DNN which takes as input a feature representation
of the robot’s ego-noise (cf. Section 3.3) and returns estimates for both the linear and
angular velocity at which the robot is travelling. We leverage multi-task learning (MTL)
to simultaneously regress both the linear and the angular velocity. Multi-task learning,
indeed, allows greater generalisation, as it is able to take advantage of information in
training signals of related tasks, and has been successfully used in several applications
[16, 17]. In this work, we opt for hard parameter sharing, which was firstly introduced
by [18]. In the resulting architecture, the input and the first hidden layer are shared
across the two tasks (i.e. linear and angular velocity estimation), while the rest of the
hidden layers are not shared. This architecture was empirically chosen, as being the
one yielding the best performance on our dataset. We employ for both tasks four hidden
layers with a Rectified Linear (ReL) function. Our network outputs a vector V = [0, &],
consisting of the estimates of the magnitude of the linear velocity v and the magnitude
of the angular velocity w. Similarly to [5], we define our loss function L as:

L= v =2l + flw -l )
where v and w are the ground truth values we can extrapolate from our Visual Odometry

system (cf. Section 3.1) . Training is performed by minimising the Euclidean loss L with
{1 regularisation, using back-propagation.



3.3 Feature Representation

In audio-based classification, Mel-frequency cepstrum coefficients (MFCCs) [6] have
been traditionally used as feature representations of the signals. However, recent stud-
ies proved that the performance of classification systems relying on MFCCs is greatly
reduced in the presence of noise [7, 19]. Our data is affected by some environmental
noise, such as people talking in the proximity of the robot, construction works nearby,
wind, and cars passing. Noise which is especially manifest when the vehicle is mov-
ing slowly, as the sound level (i.e. volume) of the motion tends to increase with the
speed. In the attempt of being more resilient to these additional and unwanted acoustic
signals, in this work we opt for a frequency representation based on Gammatone filter-
banks, which have been originally introduced in [20], as an approximation to the human
cochlear frequency selectivity, and later used in several contexts (e.g. [21]). Similarly
to [7], we employ a time-independent representation of the sound, which is obtained by
filtering the audio waveform with a bank of Gammatone band-pass filters. The impulse
response of a Gammatone filter centered at frequency f is:
a—1_,—2mbt :
ot ) = {t e cos2mf.t ift > O )
0 otherwise

where a indicates the order of the filter, and b is the bandwidth, which increases as
the center frequency f. increases. The frequency-dependent bandwidth yield narrower
filters at low frequencies and broader filters at high frequencies. Several investigations
have been carried out to compute the values of the filters’ parameters which best ap-
proximate the human auditory filter. In this work, following [22], we utilise fourth-order
filters (i.e. a = 4), and approximate b as:

_ fe
b=1.09 (9_26449+24.7 3)

The center frequencies f. of the filters are distributed across the available spectrum in
proportion to their bandwidth. The identification of those frequencies can be achieved
by using the Equivalent Rectangular Bandwidth (ERB) scale [23]. Let 2(t) be the audio
signal we want to analyse, the output response y(t, f.) of a filter characterised by the
center frequency f. can be computed as:

y(t’fC) :I(t) *g(tvfc) (€]

We calculate the output response for all the filters in the bank. The energy of these out-
put responses, expressed in dB, represents our feature representation of the audio signal
in the frequency domain, which we name G7T F'. Extending the same procedure to over-
lapping time frames of the signal, it is possible to generate time-frequency represen-
tations which follow the frequency resolution imposed by the Gammatone filterbank,
the Gammatonegrams. Examples of the gammatonegrams and GTF representations for
frames of 1 s, recorded with the robot travelling at different linear velocities (angular
velocity is negligible in those frames) are provided in Figure 2 and 3.

Additionally, we consider also some signal statistics in the time domain, such as the



short-term energy (STE) of an entire frame and the zero-crossing rate (ZCR). The zero-
crossing rate indicates the number of times the signal changes its sign within a frame.
Figure 1 shows a 2D normalised histogram of the ZCR and linear velocity pairs (Figure
la), as well as a 2D normalised histogram of the short-term energy and linear velocity
pairs (Figure 1b). We notice that the ZCR increases with the linear velocity. The same
is observed for what concerns the short-term energy. Both considerations suggest that
higher linear velocity are characterised by higher frequencies (due to the higher ZCR)
and by a higher sound level (due to higher STE). Same behaviour is appreciable from
the Gammatone filterbanks and the GTF representations (cf. Figures 2 and 3). While no
apparent pattern is observed for what concerns the angular velocity and either the ZRC
or the STE, an example of how the angular velocity affects the spectrum of the ego-
noise is presented in Figure 4. The figure shows the time-independent representation of
two frames, characterised by the same linear velocity (v = 0.4 m/s) and different angu-
lar one (w € {0.005, 0.26} rad/s). We notice that the angular velocity mainly influences
the lower part of the ego-noise’s frequency spectrum. In particular, a higher angular ve-
locity is reflected into greater energy in the lower part of the frequency spectrum. The
complete framework is shown in Figure 5.
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Fig. 1: From left to right: 2D normalised histogram of the zero crossing rate (ZCR) and
linear velocity pairs (a) and 2D normalised histogram of the short-term energy (STE)
and linear velocity pairs (b). We notice that the ZCR increases with the linear velocity.
The same is observed for what concerns the STE.

4 Experimental Evaluation

To validate our framework, we collected approximately two hours of data at the Uni-
versity Parks in Oxford, UK, using a Clearpath Husky A200 platform. The robot is
equipped with a Bumblebee2 stereo camera, two Knowles omnidirectional boom mi-
crophones mounted in proximity of each of the two front wheels, and an ALESIS 104
audio interface. The stereo camera is used to collect the image data that will be em-
ployed by the VO pipeline to generate ground truth values for the velocity estimates.
The audio data has been recorded at a sampling frequency fs of 44100 Hz at a reso-
lution of 16 bits. Camera images are gathered at a rate of 10 frames per second (FPS)
and with 768 x 1024 pixel resolution. The data covers a total route of about 2 Km in
length and includes portions of the park characterised by different kinds of terrain, such
as grass, soil, and gravel. We made this choice to build a regression model able to gen-
eralise to different surfaces. The data was collected by manually driving the platform
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Fig. 2: Gammatonegrams of 1s frames of ego-noise recorded with the robot travelling
at different linear velocities: (a) robot is travelling at 0.1 m/s, (b) robot travelling at
0.5 m/s, (c) robot travelling at 0.7 m/s, (d) robot travelling at 1 m/s. Angular velocity
is negligible in those frames. The energy of the time-frequency bins is expressed in
decibel (dB) scale. The filtering is performed using 64 frequency channels (i.e. number
of filters in the Gammatone filterbank) between 0 Hz and 22050 Hz.

to obtain a wider spectrum of motion profiles and be able to encapsulate the behaviour
of the robot in several circumstances. We used in total 85K frames of 1s for training
and 13K for testing. We carry out two different kinds of experiments. We first evaluate
our MTL framework, varying the number of frequency channels used in the frequency
representation. In particular, we consider 64 and 128 frequency channels (i.e. number of
filters in the Gammatone filterbank). Secondly, we compare the behaviour of the MTL
framework with a baseline one, represented by a single-task learning scheme, where the
two velocities are regressed separately by two different networks.

4.1 Implementation Details

We trained the networks using mini-batch gradient descent based on back propagation,
employing the Adam optimisation algorithm [24]. We applied dropout [25] to each
non-shared layer for both tasks’ architectures with a keeping probability of 0.9. The
models were implemented using the Tensorflow [26] libraries. Independently of the
number of filters utilised, we confine our frequency analysis to a range between 0 Hz
and fs/2 = 22050 Hz, corresponding to the maximum reliable frequency resolution
available. The filtering is computed on time domain frames of 1 s with 10 ms overlap,
after applying a Hamming window to avoid spectral leakage. As our VO system returns
ego-motion estimates at 10 Hz, we can generate the 1 s audio frames by using a sliding
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Fig. 3: GTF representations correspondent to the gammatonegrams in Figure 2: (a) robot
is travelling at 0.1 m/s, (b) robot travelling at 0.5 m/s, (c) robot travelling at 0.7 m/s, (d)
robot travelling at 1 m/s. Angular velocity is negligible in those frames. The filtering
is performed using 64 frequency channels (i.e. number of filters in the Gammatone
filterbank) between 0 Hz and 22050 Hz.

207 662 1593 3497 7390 15351 207 662 1593 3497 7390 15351
Frequency (Hz) Frequency (Hz)

-50 -40 -30 -20 -50 -40 -30 -20
(a) w = 0.005 rad/s (b) w = 0.26 rad/s
-10

— w = 0.005 rad/s
— w = 0.26 rad/s

07 662 1593 3497 7390 15351
Frequency (Hz)

(c) Energy vs Frequency Channels

Fig.4: The figure shows the GTF representations of two frames, characterised by the
same linear velocity (v = 0.4 m/s) and different angular ones. Specifically, the top-left
diagram (a) represents an audio frame where the vehicle is travelling at w = 0.005 rad/s,
while the top-right (b) represents an audio frame where the vehicle is travelling at w =
0.26 rad/s. Energy is expressed in dB. Differences between the frequency spectra of the
two frames are further highlighted in (c). We observe that a higher angular velocity is
reflected into greater energy in the lower part of the frequency spectrum.



window of 1 s size with 100 ms overlap. Similarly to previous works on deep learning
in the auditory domain (cf. [27], [28]), we randomly split our dataset into training set
(85%) and test set (15%). To avoid any unwanted overlap between training and testing
sets, frames in the training set and frames in the test set do not share any audio segment
across the sliding windows.
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Fig. 5: Representation of the learning scheme used. The waveform of the original signal
in the time domain is parsed and features are extracted (purple area). Specifically, ZCR
indicates the zero-crossing rate of the signal, STE represents the short-term energy, and
GTF is the feature representation in the frequency domain obtained after applying the
Gammatone filterbank to the original signal. Features are then concatenated and fed to
the DNN. The input and the first hidden layer of the networks are shared across the two
task (i.e. linear and angular velocity estimation). The rest of the hidden layers (we used
four in this case for both tasks) are not shared. The green structure refers to the portion
of the network employed to regress exclusively the linear velocity ¢, while the orange
one refers to the portion of the network employed to regress the angular velocity w. All
hidden layers are equipped with a Rectified Linear Unit (ReLU).




4.2 Experiment 1: Multi-Task Learning

In this first experiment we analyse the performance of our system whilst varying the
number of filters N F' employed. In particular, we evaluate the framework for NF' €
{64,128}. Table 1 reports the results of this experiment. In the table, E, and E,, refer
to the median absolute error in the estimation of the linear and angular velocity on the
test data. No significant difference in the performance is observable when increasing the
number of filters from 64 to 128, neither for what concerns the linear velocity nor in case
of the angular velocity, leading to the conclusion that 64 filters have already a proper
representation power for the task. The table also reports the median absolute error in
the estimation of the linear and angular velocity in the MTL regression framework on
the training data, indicated with T,and T, respectively. Figure 6 shows the normalised
histograms of the absolute error in the estimation of the linear velocity (Figure 6a)
and in the estimation of the angular velocity (Figure 6b), for NF' € {64,128}, when
following an MTL scheme.

0 0.1 0.2 03 0.4 0 0.05 0.1 0.15 0.2
Absolute Error [m/s] Absolute Error [rad/s]
() Normalised Histogram of £, in the MTL  (b) Normalised Histogram of E,, in the MTL
case case

Fig. 6: From left to right: Normalised histogram of the absolute error in the estimation
of the linear velocity F, in the MTL case (a), Normalised histogram of the absolute
error in the estimation of the angular velocity E,, in the MTL case (b). Both histograms
refer to the errors on the testing data. N F' refers to the number of frequency channels
used in the feature representation.

4.3 Experiment 2: Single-Task Learning

In this second experiment we compare the behaviour of the MTL framework with a
baseline one, represented by a single-task learning scheme. Specifically, in the STL
case, we employ the same deep architecture as the one illustrated in Figure 5, but with-
out the shared layer, i.e. we regress the two velocities separately. Also in this experi-
ment, we consider two different feature representations, obtained by using either 64 or
128 frequency channels. Table 1 reports the results of this experiment. In the table, E;,S
and E; refer to the median absolute error in the estimation of the linear and angular
velocity on the test data, by using the STL regression framework. T; and T;S indicate
the median absolute error in the estimation of the linear and angular velocity on the
training data. Figure 7 shows the normalised histograms of the absolute error in the es-
timation of the linear velocity (Figure 7a) and in the estimation of the angular velocity
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(Figure 7b), for NF' € {64,128}, when following an STL scheme. We see that in this
case, employing 64 frequency channels yields better performance in the linear veloc-
ity estimation, while the opposite behaviour is reported for what concerns the angular
velocity.

MTL STL
E, E, T, T, E, E, T, T,
[m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s]
64 0.065 0.017 0.041 0.013 0.074 0.023 0.037 0.011
128 0.064 0.018 0.040 0.009 0.081 0.021 0.030 0.009

NF

Table 1: The table reports the results of the experiments. Ev and F:w indicate the median
absolute error in the estimation of the linear and angular velocity in the MTL and the
STL regression frameworks on the test data. T, » and T, ., indicate the median absolute
error in the estimation of the linear and angular velocity in the MTL and the STL re-
gression frameworks on the training data. N F' refers to the number of filters used in the

Gammatone filterbank.

When comparing the behaviour of the STL system with the MTL one, we observe
that the MTL scheme outperforms the STL one, independently of the number of chan-
nels used, both in the case of the linear and the angular velocity. Specifically, we obtain
an improvement in the performance by 12% on E, and 22% on E,,, when NF = 64,
and an improvement by 26% on E,, and 14% on E,,, when N F' = 128. We also notice
that the STL scheme is characterised by a lower error on the training set, in the estima-
tion of both velocities, independently of the number of filters used. Such a behaviour is
expected, as one of the advantages of MTL, especially in case of hard parameter shar-
ing, is, indeed, to help against overfitting, increasing the generalisation capabilities of
the model.

5 Conclusions

In this paper we investigated the possibility of estimating a robot’s ego-motion by re-
lying only on acoustic sensing. We performed regression analysis employing a deep
neural network and followed a multi-task learning scheme to simultaneously estimate
the magnitude of the linear and the angular velocity of the vehicle. Our experimental
evaluation conducted on approximately two hours of data collected by an unmanned
outdoor field robot proved that our framework is able to provide accurate ego-motion
estimates, despite the presence of background noise and the robot travelling on differ-
ent kinds of terrain. When compared to a single-task learning scheme, where the two
velocities are modelled separately, our framework shows an improvement of up to 26%
in the ego-motion estimation. Given those results, we envision this system being useful
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Fig. 7: From left to right: Normalised histogram of the absolute error in the estimation
of the linear velocity F, in the STL case (a), Normalised histogram of the absolute error
in the estimation of the angular velocity £, in the STL case (b). Both histograms refer
to the errors on the testing data. [NV F refers to the number of frequency channels used
in the feature representation.

as an auxiliary source of odometry information on the side of more traditional odome-
try systems. Acoustic sensing, indeed, is not affected by lighting or scene appearance.
Future work could investigate the possibility of combining the current framework with
visual odometry or laser-based odometry systems in a multi-modal setting.
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