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Abstract— In this paper we describe a system for use on a
mobile robot that detects potential loop closures using both
the visual and spatial appearance of the local scene. Loop
closing is the act of correctly asserting that a vehicle has
returned to a previously visited location. It is an important
component in the search to make SLAM (Simultaneous
Localization and Mapping) the reliable technology it should
be. Paradoxically, it is hardest in the presence of substantial
errors in vehicle pose estimates which is exactly when it
is needed most. The contribution of this paper is to show
how a principled and robust description of local spatial
appearance (using laser rangefinder data) can be combined
with a purely camera based system to produce superior
performance. Individual spatial components (segments) of the
local structure are described using a rotationally invariant
shape descriptor and salient aspects thereof, and entropy as
measure of their innate complexity. Comparisons between
scenes are made using relative entropy and by examining
the mutual arrangement of groups of segments. We show
the inclusion of spatial information allows the resolution
of ambiguities stemming from repetitive visual artifacts in
urban settings. Importantly the method we present is entirely
independent of the navigation and or mapping process and
so is entirely unaffected by gross errors in pose estimation.

Index Terms— Mobile Robotics, SLAM, Loop Closing,
Saliency, Visual Features, Spatial Descriptions, Data Asso-
ciation.

I. I NTRODUCTION AND MOTIVATION

SLAM (simultaneous localisation and mapping) is a core
information engineering problem in mobile robotics and
has received much attention in past years especially regard-
ing estimation theoretic aspects. Good progress has been
made but SLAM is still far from being an established and
reliable technology. A big problem is a lack of robustness.
This markedly manifested during what has become known
as loop closing — the act of correctly asserting that the
vehicle has returned to a previously visited location. Loop
closing is hardest in the presence of substantial errors in
vehicle pose estimates — exactly when it is needed most.

It is common practice to use estimates produced by a
SLAM algorithm itself to detect loop closure. The naive
approach adopted in early SLAM work simply performs
a nearest neighbor statistical gate on the likelihood of the
current measurements given map and pose estimates. This
method fails catastrophically just when it is needed most.
If the pose estimate is in gross error (as is often the case
following a transit around a long loop), while in reality
the vehicle is in an already mapped area, the likelihood
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of measurements being explained by the pose and map
estimate is vanishingly small. The consequence of this is
that loop closure is not detected. Previously visited areas
are re-mapped, but in the wrong global location, error
accumulates without bound and the robot is, for all intents
and purposes, lost. This is bad.

Figure 1 shows an obvious case of poor loop closing,
linearisation and perception errors have lead to a gross
error in vehicle location estimate - so bad that the true
location lies outside the three sigma bound on vehicle
uncertainty. ( “so bad” was caused by an earlier error of
a fraction of a degree) The situation depicted in figure 1
might be avoided by adjusting noise parameters, employing
a different SLAM algorithm entirely or simply adding
bespoke error checks here and there. Such changes may
allow successful loop closing in this and perhaps several
other similar cases but the central problem still remains -
it is an unstable equilibrium to use SLAM estimates in the
loop closing process when the statistics themselves may be
at best biased and at worst inconsistent.

The problem here is that the likelihood used is not
independent of vehicle pose. More sophisticated techniques
offer some degree of robustness against global vehicle
error. For example, by looking at the relationship between
features in the local area [15] or continually trying to relo-
cate in a bounded set of sub-maps [2] that are expected to
have some non-empty intersection with the true local area.
However these methods still struggle when the estimated
vehicle position is in gross error.

As argued in [18], the hard part about loop closing is
not handling the presence of a loop but detecting when
loop closure is even a possibility. To do this one needs
to decide when and where to look. Searching only in the
neighborhood of the vehicle is not robust in the face of
gross vehicle error.

In [6] hyper-priors are learnt off-line typifying the geo-
metric and topological structure of regions (corridors and
intersections) commonly found in indoor settings. As the
robot(s) moves through its/their environment, local scene
observations are combined with the initial hyper-prior to
produce a modified posterior. This distribution is used as
a generative model for the observations of the local scene
and used to calculate the probability of new measurements
being “in or out-of-map”. Although this method does
offer substantially improved robustness and performance
its success is predicated upon good structural priors which
are applicable to the entire workspace.



It is possible to integrate out the dependence on vehicle
pose and search over all possible vehicle poses - essentially
repetitively solving the kidnapped robot problem [16]. An-
other very attractive proposal is to eschew the need to make
hard and fast, one-time-only data association decisions and
instead use a mechanism that allows past decisions to be
revoked or changed and their effect to be vanquished from
the state estimates. [7][19]. While this policy takes the sting
out of making the wrong decisions and would undoubtedly
have a substantial effect on the overall reliability of SLAM
systems, it does not negate or depreciate the advantages in
making better decisions in the first place.

Many authors have successfully used visual landmarks
in SLAM, for example [20], [3], [13], [5]. In this paper we
also use a camera to extract visual landmarks however we
do not use them as geometric features within the SLAM
algorithm. Instead we carefully choose them so that their
saliency and wide-baseline visibility allow detection of
loop closure events independently of vehicle estimates.

The extraction and use of these “salient” features is
described in [18] and briefly summarized in the next
section. The contribution of this paper is to build on this
work and to extend a visual appearance based system into
a visualand spatial appearance based system. In this work
the spatial appearance will be measured by a conventional,
ubiquitous laser range finder.

Our motivation for this extension is two-fold. Firstly
multi-modal sensing naturally leads to richer and more
discriminative descriptions - just as shifting from 2D laser
scans to 3D laser scans does. Our second and perhaps
more tangible motivation is to address shortcomings in
our solely visual-appearance system. We found that many
urban environments possessed repetitious visual features
which produced false positives. A query image, taken from
a current location would be matched to the contents of one
or more previous images stored in a large database. This
would eventually lead to the erroneous declaration of loop
closure events in (to a human) ludicrous situations. For
example, fire escape notices, multi-paned windows and oc-
casional wall patterns were repetitious visual events in our
test environments. However they did not occur in similar
spatial settings. This paper shows that by describing the
local spatial appearance of the image capture locale, false
visual matches can be successfully discriminated against.
This increases the reliability of loop closure detection.

The operation at the heart of the spatial discrimination
component is the comparison of two 2D laser images (
not necessarily a single scan and more likely to be a scan-
patch in the terminology of [10]) of the locales of two
camera images. One picture-laser pair will be a query-
pair — encapsulating the spatial and visual appearance
of the robot’s current location. This pair will typically
be compared to one of many possible candidate pairs in
a database — a set of picture-laser pairs built over the
vehicle’s past trajectory.

A. Related Work

We propose a new method of comparing laser patches
based on their mutual spatial similarity irrespective of
beliefs in their global location. The conventional correlation
based scan matching technique (which was used in the
SLAM algorithm producing Figure 1) was discounted
because it was inefficient for 3D scan matching and,
in the absence of a prior on the relative pose between
patches, produced false matches especially in the presence
of substantial occlusion and capture locations.

The description of shape is central to our system. We use
shape as a key quality of the laser data. Shape descriptors
of boundary contours of 2D objects are widely adopted in a
multitude of applications, particularly in shape-based object
retrieval in image databases. Here, we highlight the tech-
niques on which we rely and build. Hinkel [8] developed
the angle histogram method which measures the relative
angle between any two adjacent laser range points. Weiss
[23] employed the angle histogram to match rangefinder
scans from different locations and hence compute the
translational and rotational displacement of a mobile robot.
Importantly the authors point out that an angle histogram
is largely rotationally translationally invariant . Weber [22]
attempts to find matches to a query laser scan by graphs
constructed of anchor points — reproducible object feature
positions that correspond to sharp edges in the angle
function.

A laser scan can be deemed as an top-view image of the
geometric structure of the environment and though most
efforts have concentrated on extracting shape descriptors
of 2D objects in images [24], [1]. Latecki et. al [11]
have applied their shape similarity system to the problem
of robot localization and mapping in recognition of the
similarity in these two problems.

II. A N IMAGE-BASED RETRIEVAL SYSTEM

In [18], a system was developed able to close loops with
visually salient features. Figure 1 shows a typical result in
which two, automatically detected visually salient images
were used to close a loop.

Visual saliency is a broad term that refers to the idea
that certain parts of a scene are “pre-attentively distinctive”
[17]. The Scale Saliency algorithm that is used in [18] was
proposed by Kadir and Brady [9] in which salient regions
within images are defined as a function of local image
complexity weighted by a measure of self-similarity across
scale space.

In addition to being salient we wish to detect image
features that are robust to changes in view point. The
motivation for this is as follows. The vehicle camera is
unlikely to have the same pose when the host vehicle
revisits an area as it did when it first encountered it.
We adopt one such detector [14], which finds “maximally
stable extremal regions” or “MSERs” and offers significant
invariance under affine transformations. The reason for the
wide-baseline stability of the technique lies in the fact
that connectivity (which is essentially what is detected) is
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Fig. 1. (a) shows a snapshot of our SLAM algorithm just before loop
closing takes place. The vehicle poses stored in the state vector are shown
in red. The performance of the SLAM algorithm is just as would be
expected. Global uncertainty (gray ellipses) increases as the length of
the excursion from the start location increases. A poor scan match at
the bottom right introduced a small angular error which leads to a gross
error in pose estimate when in reality the vehicle has returned to near its
starting locations (top right). The inset images are the two camera views
used in the loop-closing process. The left hand image is the query image
and the right hand one the retrieved, matching image. The poses that
correspond closest in time to the two images are indicated with arrows.
(b) shows the final map after applying the loop closing constraint. As
expected the marginal covariances on each vehicle pose decrease and
a crisp map results - as would be the case for any choice of SLAM
algorithm.

preserved under reasonable affine transformations (< 700

in the plane ).
Having found image regions that fulfil the above two

criteria (salientand wide-baseline stable) we encode them
in a way that is both compact, to allow swift comparisons
with other regions, and rich enough to allow these
comparisons to be highly discriminatory. The descriptor
chosen is the SIFT descriptor [12] which has become
immensely popular in computer vision applications [21]
and used with good effect in SLAM in [13].

A. A Failure Condition

The left-hand column of Figure 10 illustrates an anomaly
where the matched visual scene is visually similar to the
query but the robot is actually at a different location. This
is an example where the visual image matching system
is working as hoped yet it incorrectly suggests a loop
closure event. The geometry of the local environments are
truly different. The spatial appearance of the immediate
environment must be taken into consideration. Accordingly,
the rest of the paper is devoted to describing one approach
to this task.

III. SPATIAL DESCRIPTORS

We begin by describing how a complete laser patch is
passed through a simple pipeline of processes resulting in a
set of descriptors that encode the shape and spatial saliency
of local regions. We then discuss how these descriptors
can be compared with one another before bringing the
descriptor generation and comparison functionality together
to build a highly discriminative system.

A. Initial Segmentation

Fig. 2. Above shows a typical geometry patch after segmentation and a
graph depiction of the way we encapsulate the information contained.
Each node is a segment and contains the CAF function, its entropy
measure and a list of critical points. The edges represent a known spatial
relationship between segments.

The laser scan is divided into smaller but sizeable
“segments”. These segments are formed using a standard
nearest neighbor clustering algorithm. A new segment is
formed whenever there is a significant break along a
contour 1. These breaks are due to both occlusions and
the true structure of the environment. Figure 2 shows a
typical segmentation, the laser patch on the left is broken
up into four segments. We represent each segment as a
node on the graph on the right. The spatial relationships
betweenthe segments are encoded into edges that connect
the nodes. The generation of these edge descriptors will be
discussed after considering how the segments themselves
are described.

B. Segment Descriptors

The segmentation completed, we now desire to describe
each segment. The generated descriptors will be the values
of each node in Figure 2. Each node is described using
a cumulative angular function, its entropy value and a
set of “critical points” along the segment’s boundary. The
motivation behind and method employed in these steps are
as follows:

1) The Cumulative Angular Function:Each segment
is described by the “cumulative angular” or “turning”
function [23], [4] as illustrated by Figure 3. The turning
function is a plot of the cumulative change in turning angle
φ versus the arc-length of the segment. To illustrate, the
turning function maps straight linesax + by + c = 0 to
φ = 0, circles to φ = αφ and squares to a “staircase”
function in φ. A key characteristics of the cumulative
angular function is that it is rotational and translational
invariant. Before describing the segment, the points in
the segment are passed through a low-pass filter to filter
the effects of small amplified high frequency noise from
uncertainties in range measurements.

2) Entropy: We wish to measure thecomplexityof a
segment so that we can prefer matches between “complex”
shapes to matches with “simple” shapes. This is motivated
by reasoning that a positive match between two complex

1Note we do not require a convex scan patch



shapes is far more likely to be a true positive than a match
between one simple, one complex and two simple shapes.
A natural way to encode complexity is via entropy.

Fig. 3. The cumulative angular function is transformed into a histogram
of angular values. Each bin contains the number of points along the
cumulative angular function that have angular values that fall within
the bin value. Using this histogram of bin values, the entropy of the
cumulative angular function can be calculated.

In this case we may write an expression for entropy as

SD =
∫

i∈D

PDi log2 PDidi (1)

where PDi is the probability of descriptori and i takes
on values in D the set of all descriptor values. The
descriptor values in this case are the angular values along
the cumulative angular function.

The integral is calculated from a histogram of the
cumulative angle function. Each histogram bin contains the
number of points along the cumulative angular function
that have angular values that fall within the bin value. The
entropy follows from 1.

Fig. 4. Segments of laser data (right) are mapped to cumulative angle
functions (left).SD is calculated from Equation 1.

Figure 4 illustrates the process. First cumulative angle
functions are calculated and then binned and integrated
according to 1. Note how as expected the line segment
has a smaller entropy value (1.8) while the more inter-
esting curve segment has a larger entropy value (4.3). A
distinctive segment will have a cumulative angular function
with multiple peaks and troughs while a simple segment

will have a relatively flat cumulative angular function. In
deriving shape descriptors, emphasis (via thresholding) is
placed on encoding segments with high entropy as they are
more distinctive.

C. Inter-Segment Descriptors

Fig. 5. The way in which the relationship (in this case an SE2
transformation) between segments is encoded. The two segmentsS and
S′ containnc andnc′ critical points respectively. For each critical point
in S we form a“bundle” of links to allnc′ critical points inS′. In all
there will benc bundles andnc×nc′ links in total but only one bundle
is shown here. Each bundle, (so long as it contains more than one link)
defines a rigid transformation between a critical point inS and the entire
segmentS′. We define each edge in the graph of figure B to be the set
of all bundles fromS to S′. This is by intent a redundant way to store
the relationship between the two segments.

1) Critical Points: We wish to encode the spatial con-
figuration between segments, which will form the inter-
segment descriptors of the laser scan (the edges of the
graph in 2. We do this by first extracting points of high cur-
vature along the segments. We call these “critical points”.
Critical points are sharp changes in the cumulative angle
function and they are marked as crosses in the laser patches
shown in Figure 5.

Repeatability of extraction of these critical points is
an important consideration. The thresholding on C.A.F
(cumulative angle function) entropy selects in favor of
segments possessing strong critical points — regions of
high curvature likely to be visible over a range of vantage
points.

2) Segment Configurations:The distance and relative
orientation between critical points form the links (the lines
joining the two segments shown in figure 5 that lock two
segments in a fixed configuration. To determine the relative
orientation between the critical points, we first have to
determine the orientation of the segment. This is done using
simply the largest eigenvector of the segment.

IV. D ESCRIPTORCOMPARISON

The previous section described the generation of descrip-
tors from a laser patch. This section discusses how these
descriptors can be compared to one another.

A. Segment Descriptor Comparison

We now describe how two segment descriptors generated
according to Section III-B can be compared to one another.
Each segment (a node in the graph of Figure 2) contains
the CAF function,its entropy measure and a list of critical



points. Considering two such nodes we use three disparity
measures based on their properties.

Fig. 6. Figure 6 shows the disparity between two CAFs of two segments,
S and S′. CAF is the one-dimensional representation of 2-D segments,
which encodes the structure of the points within the segment by the
change in tangential angles between consecutive points. The difference
between the two CAFs is the area between the two curves. Segments
that are similar to each other will have similar angular functions and
correspondingly, the disparity between the two angular functions will be
small.

1) Angular Function Disparity :By representing a 2-
D patch segment as a 1-D shape descriptor, finding the
best fit between two segments reduces from a 3-D search
space[x, y, θ] problem into a 2-D search space [4]. This
is a search problem in the position-rotation space (β, γ)
since scale is fixed in our application. The query curve
is translated vertically and slide horizontally to find the
minimum error between the query curve and the pattern
curve, see Figure 6. This approach is similar to the method
employed by [4], except that their search problem is
in scale-position-rotation space. The difference,e(β, γ),
between CAFs is calculated as

e(β, γ) =
∫ l

0

(T1(s)− T2(s + β) + γ)2ds (2)

where the two cumulative angular functions denoted byT1

andT2, the position-rotation search space is parameterized
by (β, γ) and s parameterizes arc-length around the seg-
ment.

A scalar similarity measureη1 lying in [0, 1] is then
calculated as

η1 =
1

1 + e
(3)

.
2) Match Length Disparity:A second scalarη2 is cal-

culated as the matched length to total length ratio:

η2 =
l(m)
l(T )

(4)

where l(m) is the length of the matched segment portion
and l(T ) is the total length of the query segment.

In figure 6, the matched length is the portion of the
abscissa where there is overlap between the two cumulative
angular functions and total length is the length of the query
cumulative angular function. The larger the portion of the
segment that is matched (based onη1), the more similar
the segments are.

3) Entropy Disparity: We use relative entropy to mea-
sure the similarity between segments. The relative entropy
, or the Kullback-Leibler distance, is given by:

K(f ||f ′) =
m∑

i=1

fi × ln
fi

f ′i
(5)

where m is the number of bins andf andf ′ are the prob-
ability distributions approximated by the angle histograms
an example of which is illustrated in Figure 3. The smaller
the relative entropy, the more similar the distribution of
the two histograms. When both distributions are equivalent
K(f ||f ′) = 0. The relative entropy is normalized to lie
within [0, 1] to produce a third scalarη3.

We only calculateη3 (and hence compare segments)
when both have large§D. The concept is that it is less likely
for segments with high entropy to mismatch compared to
segments with low entropy. Consider a laser scan of a long,
straight corridor represented by two straight line segments,
these straight line segments will match easily with straight
line segments from any other laser scans taken at other
portions of the corridor.
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Fig. 7. Segment to Segment matching using the similarity vectorη. The
triangle represents a perfect match( Identical segments). The figure shows
the similarity between a query segment,Sq and all segments from two
other scansS′ andS′′. Two close matches are found which are depicted
as stars. The axes are angular function similarity measure, matched length
ratio measure and entropy similarity measure.

The above three similarity scalars are stacked in vector
ηS,S′ = [η1, η2, η3]T . That describes the degree of similar-
ity betweenS andS′. If S andS′ are identical segments
ηS,S′ will be [1, 1, 1]T In figure 7, the position of every
segment is displayed inη-space. The triangle represents
the position of a perfect match with the query segment in
all three similarity measures. The stars correspond to the
segments that are most similar to the query segment. The
asterisks are the positions of other segmentsη-space.

B. Edge Comparison

As well as comparing the shape characteristics of seg-
ments, the matching technique described in the next section
will ask if the relationshipbetweensegments within a patch
are similar to those in a test case.

As suggested in [22], we determine the similarity be-
tween the segment-segment links by matching arrays of
distances and relative orientations of the segment-segment
edges. In Figure 8, the segment-segment relationships for
two laser scans are shown. Due to occlusions, a minority



Fig. 8. A method of comparing inter-segment relationships (edges).
In our determination of similarity between edges, the bundles of links
that comprise the edges are compared against each other using distance
and relative angle criteria. The dark links represent those that have been
successfully matched with links of the other edge. The links are marked
in black represent links that have not been matched with links of the other
edge. This can be due to occlusions or the segmentation process.

of the critical points found in one laser scan are not seen
in the other. The links that are successfully matched are
highlighted in a darker tone. To establish correspondence
of spatial configuration between the segments, a 50 percent
paring is required.

V. M ATCHING

We now consider the task of deciding whether a partic-
ular scanS matches another scanS ′. We are not willing
to tolerate reliance on scans containing straight lines or
‘point features’. We wish to be robust to both occlusion and
gross changes in view point. Importantly, for the reasons
argued in section I we must not require any prior on the
likely transformation betweenS and S ′. We progress by
discussing segment to segment matching (node to node in
the graph of Figure 2) and then move on to segment group
to segment group matching.

We begin by randomly selecting a random segmenti
from the ns segments inS. We then findn′s similarity
vectorsηi,1:n′s betweeni and then′s segments inS ′ as
described in section IV-A. The best pairing< i, j′ > is
chosen such thatj′ = arg minj(|| 1− ηi,j ||).

Fig. 9. The alignment process aims to find a match between two graphs.
A positive match only occurs if the individual nodes match based on
the process described in subsection III-B and the individual edges match
based on the process described in subsection IV-B.

The final step of our method seeks to match the graph
representations of laser patches and is similar to that used
in [22]. It tries to match both the shape and saliency
properties of the segments and their relationships to neigh-
boring clusters in the presence of substantial occlusion and
partial observations. In essence we are matching segment

shape and segment-cluster shape across two scans - this is
akin to finding a largest subgraph ofG(S) in G(S′) and
G(S′) in G(S). However, presence of occlusion and partial
observability means nodes and edges are likely to missing.
We seed the search with the best pairing< i, j′ >. Each
of the neighbors of segmenti in S is compared with the
neighbors of segmentj∗ in S ′. If a new segment-segment
correspondence is found using the methods of Section IV
and the edges between segments also pass the similarity
test the algorithm continues to examine and compare the
neighbors of the new connected segments. In this way a
connected, matching subgraph is built from the two most
similar segments in the two patches. We currently employ
an empirical heuristic to declare two patches similar — if
the cardinality of the matching subgraph is greater or equal
to two a positive match is signalled. This is fairly stringent
condition as it implies shape finding strong similarities
between three or more substantial, complex shapes and
their mutual arrangement being similar in both patches.

VI. EXPERIMENTAL RESULTS

To examine and demonstrate the effectiveness of our
approach, we tested our algorithm in both indoor and
outdoor environments. In the indoor environment, a small
ATRV-Jnr mobile robot was driven up and down in a loop
along the stretch of corridor in a building. We note that this
is by no means a large loop or an extremely challenging
environment for contemporary SLAM algorithms but it
does posses some visually confusing properties.

The vehicle camera kept a constant orientation in vehicle
coordinates –looking forward and slightly to the right.
Every two seconds an image was grabbed and written
to disk. The vehicle was equipped with a standard SICK
laser, the output of which was also logged along with the
odometry from the wheel encoders.

Each image was time stamped, processed and finally en-
tered into a database as a collection of feature descriptors.
Using the image’s time stamp, the corresponding laser scan
is retrieved , processed and entered along side the visual
information as a collection of spatial descriptors. In this
indoor, experiment, a database of a little under 200 images
was collected. Figure 10 shows the rare but troublesome
failure condition occurring when only visual appearance is
used. Replicas of the same poster were found in different
locations along a corridor. The query image is shown in the
center and a false loop closing event is signalled (albeit a
visually correct match) with the image on the left. However
the spatial processing we have described discredits this
match while confirming the second match shown on the
right hand side.

The same equipment and software was used in an out-
door experiment. The ATRV-Jnr mobile robot was driven
around a car park in front of a building. Here, a database of
148 pictures was collected — see Figure 11 — where the
ground is relatively flat. As is common in urban environ-
ments, there were many replicated small-scale objects, for
example the white-framed windows are repeated along the
length of the building. Once again the combined processing



Fig. 10. Image matching using Maximally stable extremal regions and scale saliency regions. The query image is shown in the center and a false loop
closing event is signalled (albeit a visually correct match) with the image on the left. However, the spatial processing we have described in this paper
discredits this match while confirming an alternative visual match shown on the right hand side.

of visual and spatial appearance measurements allows a
visually ambiguous situation to be resolved. In these two
modest experiments we saw no false positives when using
both spatial and visual information. We are currently in the
process of collecting a more substantial data set with an
order of magnitude more image/laser-patch pairs.

VII. C ONCLUSIONS, ISSUES ANDFUTURE WORK

Although the results presented here only use 2D spatial
descriptions it is important to note that the ideas presented
here can be equally applied to 3D laser data — something
that is a current area of research as an natural extension
to this work. Segments become patches, critical points
become points of locally-maximum Gaussian curvature,
segment length becomes patch area and the entropy metrics
remain unchanged while the graph edges simply become
6DOF transformations rather than in-plane shifts.

The work we have presented here uses several threshold
values. We are currently looking at learning suitable values
from large data set rather than using the experimentally
chosen values we use at the moment. We also believe
that the the work would benefit from estimating and using
probability of spatial and visual matches as a function of
the similarity metrics. This is work underway.

We have developed a system which uses both spatial and
visual appearance to guide and aid the detection of loop
closure events. Spatial shape information is encoded and
compared in a principled way using entropy and relative
entropy respectively. The spatial matching process is de-
signed to be robust to occlusion and view point changes.
It uses a redundant number of transformations between
salient features on segment boundaries. Finally, overall
spatial similarity between two laser patches is determined

by comparing both the shape of segments within patches
and their mutual spatial arrangements.

The folding in of spatial information has markedly
improved performance and has resulted in a robust, useful
system.

REFERENCES

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts.IEEE Transactions on Pattern
Analysis and Machine Intelligience, 24(24):509–521, April 2002.

[2] M. Bosse, P. Newman, J. J. Leonard, and S. Teller. SLAM in Large-
scale Cyclic Environments using the Atlas Framework.International
Journal of Robotics Research, 23:1113–1139, 2004.

[3] J. A. Castellanos, M. Devy, and J. D. Tardós. Towards a topological
representation of indoor environments: A landmark-based approach.
In Proceedings of the IEEE/RSJ Conference on Intelligent Robots
and Systems, pages 23–28, 1998.

[4] S. Cohen and L. Guibas. Partial matching of planar polylines under
similarity transformations.Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 777–786, January 1997.

[5] A. J. Davison and D. W. Murray. Simultaneous localization and
map-building using active vision.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):865–880, 2002.

[6] D. Fox, J. Ko, K. Konolige, and B. Stewart. A hierarchical bayesian
approach to the revisiting problem in mobile robot map building.
In Proceedings of International Symposium on Robotics Research,
2003.

[7] D. Hahnel, W. Burgard, B. Wegbreit, and S. Thrun. Towards lazy
data association in slam.11th International Symposium of Robotics
Research, Sienna, 2003.

[8] R. Hinkel and T. Knieriemen. Environment perception with a laser
radar in a fast moving robot.In Proceedings of Symposium on Robot
Control, Karlsruhe, Germany, pages 68.1–68.7, October 1988.

[9] Timor Kadir and Michael Brady. Saliency, scale and image descrip-
tion. International Journal Computer Vision, pages 83–105, 2001.

[10] K. Konolige. Large-scale map-making.Proceedings of the National
Conference on AI (AAAI), San Jose, CA, 2004.

[11] L. Latecki, R. Lak̈amper, and D. Wolter. Shape similarity and visual
parts.International Conference on Discrete Geometry for Computer
Imagery, November 2003.

[12] D. G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60:91–110, 2004.



Fig. 11. Results in an outdoor environment. As in the case shown in Figure 10, a false positive loop closure is signalled w.r.t. the left-hand image when
only visual information is taken into consideration. This is discounted when spatial descriptors are used in addition. The query image and patch is in
the middle and a correct match (spatially and visually) is shown on the right. There are actually four visual , correspondences (but mutually occluding
when drawn) between the central query image and each of the candidate images.

[13] D. G. Lowe, S. Se, and J. Little. Mobile robot localization and
mapping with uncertainty using scale-invariant visual landmarks.
International Journal of Robotics Research, 21(8):735–758, 2002.

[14] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline
stereo from maximally stable extremal regions.Proceedings of the
British Machine Vision Conference, 2002.

[15] J. Neira and J. D. Tard́os. Data association in stochastic mapping
using the joint compatibility test. IEEE Trans. Robotics and
Automation, 17(6):890–897, 2001.

[16] J. Neira, J. D. Tard́os, and J. A. Castellanos. Linear time vehicle
relocation in slam.IEEE Transactions on Robotics and Automation,
2003.

[17] U. Neisser. Visual search.Scientific American, pages 94–102, 1964.
[18] P. Newman and K. Ho. SLAM - Loop Closing with Visually Salient

Features. To be published in IEEE International Conference on
Robotics and Automation, 18-22 April 2005.

[19] P. M. Newman and H. F. Durrant-Whyte. An efficient solution to
the SLAM problem using geometric projections.Proceedings of the
November 2001 SPIE conference Boston, USA, 2001.

[20] D. Ortin, J. Neira, and J.M.M. Montiel. Relocation using laser
and vision. Proceedings of the IEEE International Conference on
Robotics and Automation, 2004.

[21] J. Sivic and A. Zisserman. Video Google: A text retrieval approach
to object matching in videos. InProceedings of the International
Conference on Computer Vision, October 2003.

[22] J. Weber, K. J̈org, and E. Puttkamer. APR-Global scan matching
using anchor point relationships.The 6th International Conference
on Intellgient Autonomous Systems (IAS-6), Venice, Italy, pages 471–
478, July 2000.

[23] G. Weiβ, C. Wetzler, and Puttkamer E. Keeping track of position and
orientation of moving indoor systems by correlation of range-finder
scans.IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 1994.

[24] H. Wolfson. On curve matching.IEEE Transactions on Pattern
Analysis and Machine Intelligience, 12(5):483–489, 1990.


