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Abstract—In this paper we describe a system for use on a
mobile robot that detects potential loop closures using both
the visual and spatial appearance of the local scene. Loop
closing is the act of correctly asserting that a vehicle has
returned to a previously visited location. It is an important
component in the search to make SLAM (Simultaneous
Localization and Mapping) the reliable technology it should
be. Paradoxically, it is hardest in the presence of substantial
errors in vehicle pose estimates which is exactly when it
is needed most. The contribution of this paper is to show
how a principled and robust description of local spatial
appearance (using laser rangefinder data) can be combined
with a purely camera based system to produce superior
performance. Individual spatial components (segments) of the
local structure are described using a rotationally invariant
shape descriptor and salient aspects thereof, and entropy as
measure of their innate complexity. Comparisons between
scenes are made using relative entropy and by examining
the mutual arrangement of groups of segments. We show
the inclusion of spatial information allows the resolution
of ambiguities stemming from repetitive visual artifacts in
urban settings. Importantly the method we present is entirely
independent of the navigation and or mapping process and
so is entirely unaffected by gross errors in pose estimation.

Index Terms—Mobile Robotics, SLAM, Loop Closing,
Saliency, Visual Features, Spatial Descriptions, Data Asso-
ciation.

. INTRODUCTION AND MOTIVATION

of measurements being explained by the pose and map
estimate is vanishingly small. The consequence of this is
that loop closure is not detected. Previously visited areas
are re-mapped, but in the wrong global location, error

accumulates without bound and the robot is, for all intents

and purposes, lost. This is bad.

Figure 1 shows an obvious case of poor loop closing,
linearisation and perception errors have lead to a gross
error in vehicle location estimate - so bad that the true
location lies outside the three sigma bound on vehicle
uncertainty. ( “so bad” was caused by an earlier error of
a fraction of a degree) The situation depicted in figure 1
might be avoided by adjusting noise parameters, employing
a different SLAM algorithm entirely or simply adding
bespoke error checks here and there. Such changes may
allow successful loop closing in this and perhaps several
other similar cases but the central problem still remains -
it is an unstable equilibrium to use SLAM estimates in the
loop closing process when the statistics themselves may be
at best biased and at worst inconsistent.

The problem here is that the likelihood used is not
independent of vehicle pose. More sophisticated techniques
offer some degree of robustness against global vehicle
error. For example, by looking at the relationship between
features in the local area [15] or continually trying to relo-

SLAM (simultaneous localisation and mapping) is & coreate in a bounded set of sub-maps [2] that are expected to

information engineering problem in mobile robotics andy,ye some non-empty intersection with the true local area.

has received much attention in past years especially regarivever these methods still struggle when the estimated
ing estimation theoretic aspects. Good progress has beg¢@nicle position is in gross error.

made but SLAM is still far from being an established and  5q argued in [18], the hard part about loop closing is
reliable technology. A big problem is a lack of robustness,; handling the presence of a loop but detecting when
This markedly manifested during what has become knowrl‘bOp closure is even a possibility. To do this one needs
as loop closing — the act of correctly asserting that thgq gecide when and where to look. Searching only in the

vehicle has returned to a previously visited location. LOOpheighborhood of the vehicle is not robust in the face of
closing is hardest in the presence of substantial errors i?ross vehicle error.

vehigle pose estimate_s — exactly when it is needed mos In [6] hyper-priors are learnt off-line typifying the geo-

It is common practice to use estimates produced by dnetric and topological structure of regions (corridors and
SLAM algorithm itself to detect loop closure. The naive jyiersections) commonly found in indoor settings. As the
approach adopted in early SLAM work simply performs q,41(5) moves through its/their environment, local scene
a nearest neighbor stat|§t|cal gate on the |Ike|lh.00d of th%_bservations are combined with the initial hyper-prior to
current measurements given map and pose estimates. Thi,q,ce a modified posterior. This distribution is used as
method fails catastrophically just when it is needed mosty generative model for the observations of the local scene
If the pose estimate is in gross error (as is often the casg,q ysed to calculate the probability of new measurements
foIIowmg a 'Fra_nsn around a long loop), while |n_rez_1l|ty being “in or out-of-map”. Although this method does
the vehicle is in an already mapped area, the likelihooer sybstantially improved robustness and performance
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It is possible to integrate out the dependence on vehicld. Related Work

pose and search over all possible vehicle poses - essentially, /o propose a new method of comparing laser patches
repetitively solving the kidnapped robot problem [16]. An- haseq on their mutual spatial similarity irrespective of

other very attractive proposal is to eschew the need to mak,|iefs in their global location. The conventional correlation
hard and fast, one-time-only data association decisions ar&i;\sed scan matching technique (which was used in the

instead use a mechanism that allows past decisions to l§LAM algorithm producing Figure 1) was discounted
revoked or changed and their effect to be vanquished frofja.ause it was inefficient for 3D scan matching and

the state estimates. [7][19]. While this policy takes the sting,, the absence of a prior on the relative pose between

out of making the wrong decisions and would undoubtedly, ;i -hes produced false matches especially in the presence
have a su_bstantlal effect on the overall_ reliability of SLAM of substantial occlusion and capture locations.

syst(_ams, it does n.ot. neggte or erremate the advantages M"he description of shape is central to our system. We use
making better decisions in the first place. shape as a key quality of the laser data. Shape descriptors

Many authors have successfully used visual landmark8f Poundary contours of 2D objects are widely adopted in &
in SLAM, for example [20], [3], [13], [5]. In this paper we mul_tltude_ of_appllcatlons, particularly in shqpe-_based object
also use a camera to extract visual landmarks however wétrieval in image databases. Here, we highlight the tech-
do not use them as geometric features within the SLAMIQUES on which we rely and build. Hinkel [8] developed
algorithm. Instead we carefully choose them so that theifn® angle histogram method which measures the relative
saliency and wide-baseline visibility allow detection of @ngle between any two adjacent laser range points. Weiss

loop closure events independently of vehicle estimates. [23] employed the angle histogram to match rangefinder
scans from different locations and hence compute the

The extraction and use of these “salient” features igranslational and rotational displacement of a mobile robot.
described in [18] and briefly summarized in the nextimportantly the authors point out that an angle histogram
section. The contribution of this paper is to build on thisis largely rotationally translationally invariant . Weber [22]
work and to extend a visual appearance based system ing&itempts to find matches to a query laser scan by graphs
a visualand spatial appearance based system. In this worlconstructed of anchor points — reproducible object feature
the spatial appearance will be measured by a conventiongdositions that correspond to sharp edges in the angle
ubiquitous laser range finder. function.

A laser scan can be deemed as an top-view image of the

Cl)tl'” m(;)tllvatlon_for th|ts e|>|<ter|13|(()jn Its tvyor;fold. I;lrstly geometric structure of the environment and though most
multi-modal sensing naturally 'eads 1o Ticher and MOr€qfq, s nave concentrated on extracting shape descriptors
discriminative descriptions - just as shifting from 2D laser

of 2D objects in images [24], [1]. Latecki et. al [11]

scans to 3D laser scans does. Our second and perhqu)éve applied their shape similarity system to the problem

more tanglple motivation is to address shortcomings bt robot localization and mapping in recognition of the
our solely visual-appearance system. We found that man

. o . é(imilarity in these two problems.
urban environments possessed repetitious visual features
which produced false positives. A query image, taken from II. AN IMAGE-BASED RETRIEVAL SYSTEM

a current location would be matched to the contents of one In 118 develoned abl | | ith
or more previous images stored in a large database. This '" [18], @ system was developed able to close loops wit

would eventually lead to the erroneous declaration of Iooﬁ”sya"y salient featqres. Figure 1 Sh,OWS a typi_cal r_esult in
closure events in (to a human) ludicrous situations. Fo}"’hICh two, automatically detected visually salient images

example, fire escape notices, multi-paned windows and oé’yei;,e usled tlo CIOS? a |°b°p' q h ¢ he id
casional wall patterns were repetitious visual events in our Visual saliency is a broad term that refers to the idea

test environments. However they did not occur in similarthat certain parts of a scene are “pre-attentively distinctive”

spatial settings. This paper shows that by describing thEL7]- The Scale S_aliency algorithm that _iS “Se‘?' in [18]_was
local spatial appearance of the image capture locale, faldg©OP0sed by Kadir and Brady [9] in which salient regions

visual matches can be successfully discriminated againsf/ithin images are defined as a function of local image
This increases the reliability of loop closure detection. ~cOMPlexity weighted by a measure of self-similarity across
scale space.

The operation at the heart of the spatial discrimination In addition to being salient we wish to detect image
component is the comparison of two 2D laser images {eatures that are robust to changes in view point. The
not necessarily a single scan and more likely to be a scamnotivation for this is as follows. The vehicle camera is
patch in the terminology of [10]) of the locales of two unlikely to have the same pose when the host vehicle
camera images. One picture-laser pair will be a queryrevisits an area as it did when it first encountered it.
pair — encapsulating the spatial and visual appearancé/e adopt one such detector [14], which finds “maximally
of the robot’s current location. This pair will typically stable extremal regions” or “MSERSs” and offers significant
be compared to one of many possible candidate pairs imvariance under affine transformations. The reason for the
a database — a set of picture-laser pairs built over tha&ide-baseline stability of the technique lies in the fact
vehicle’s past trajectory. that connectivity (which is essentially what is detected) is



A. Initial Segmentation

s1 ; : Y." . /

I ‘. ¢\ 1| s4
(@) (b) \

Fig. 1. (a) shows a snapshot of our SLAM algorithm just before loop

closing takes place. The vehicle poses stored in the state vector are shollg- 2- At_Joye shows a typical geometry patch aft_er segm_entation ?”d a
in red. The performance of the SLAM algorithm is just as would be graph depiction of the way we encapsulate the information contained.

expected. Global uncertainty (gray ellipses) increases as the length &ach node is a segment and contains the CAF function, its entropy
the excursion from the start location increases. A poor scan match ap€asure and a list of critical points. The edges represent a known spatial

the bottom right introduced a small angular error which leads to a gros§e'ati0nShip between segments.

error in pose estimate when in reality the vehicle has returned to near its

starting locations (top right). The inset images are the two camera views The laser scan is divided into smaller but sizeable

used in the loop-closing process. The left hand image is the query ima » :

and the right hand one the retrieved, matching image. The poses tt?:?egmems h These segments are_formed using a Standfard

correspond closest in time to the two images are indicated with arrowsiearest neighbor clustering algorithm. A new segment is

(b) Shovés rt]he final mfl:\p after applying the rlloophcl?sing Coréstraint- Asformed whenever there is a significant break along a

expecte the margina covariances on each vehicle pose decrease 1 H

a crisp map results - as would be the case for any choice of SLAI\;{}8nt0ur - These breaks are _due to bOth occlusions and

algorithm. the true structure of the environment. Figure 2 shows a
typical segmentation, the laser patch on the left is broken
up into four segments. We represent each segment as a

preserved under reasonable affine transformatieng0®  node on the graph on the right. The spatial relationships

in the plane ). betweerthe segments are encoded into edges that connect

Having found image regions that fulfil the above two the nodes. The generation of these edge descriptors will be

criteria (salientand wide-baseline stable) we encode themdiscussed after considering how the segments themselves

in a way that is both compact, to allow swift comparisonsare described.

with other regions, and rich enough to allow these

. . N .~ ~B. Segment Descriptors
comparisons to be highly discriminatory. The descriptor ] . ]
chosen is the SIFT descriptor [12] which has become The segmentation completed, we now desire to describe

immensely popular in computer vision applications [21]€ach segment. The generated descriptors will be the values
and used with good effect in SLAM in [13]. of each node in Figure 2. Each node is described using

a cumulative angular function, its entropy value and a
set of “critical points” along the segment’s boundary. The
A. A Failure Condition motivation behind and method employed in these steps are

. : follows:
The left-hand column of Figure 10 illustrates an anomaly&ls . .
where the matched visual scene is visually similar to the 1(; The_b Cdurgulit;]ve “Angullart_ Functlor}Ea}’ch sE:tgme_:nt”
query but the robot is actually at a different location. Thig!S described by the ‘cumuiative anguiar  or -urning

is an example where the visual image matching systera’mcqon .[23]’ [4] as iIIustrated.by Figure 3 The. turning
is working as hoped yet it incorrectly suggests a IOOIOunctlon is a plot of the cumulative change in tgrnmg angle
closure event. The geometry of the local environments ar vgrsu? th?. arc-length tOf.tTﬁ I§egmentl; To |IIu_stBate, the
truly different. The spatial appearance of the immediatéurTng gncl |ont map_s stralg d Inesw + EH' C“_t v 10 ”
environment must be taken into consideration. Accordingly¢ = 0, circles to¢ = a¢ and squares to a "staircase

the rest of the paper is devoted to describing one approaJHnCtlon n ¢'_ A _key Chf.iqute“St'.CS of the cumula_tlve
to this task. angular function is that it is rotational and translational

invariant. Before describing the segment, the points in
I1l. SPATIAL DESCRIPTORS the segment are passed through a low-pass filter to filter

. - .the effects of small amplified high frequency noise from
We begin by describing how a complete laser patch IS\ ncertainties in range measurements

passed through a simple pipeline of processes resulting in aZ) Entropy: We wish to measure theomplexityof a

set of descri_ptors that encodg the shape and spatial S‘f"”en&\!gment so that we can prefer matches between “complex”
of local regions. We then discuss how these descrlptorghapes to matches with “simple” shapes. This is motivated

can be compared with one another before bringing they, veasoning that a positive match between two complex
descriptor generation and comparison functionality together

to build a highly discriminative system. INote we do not require a convex scan patch



shapes is far more likely to be a true positive than a matcill have a relatively flat cumulative angular function. In

between one simple, one complex and two simple shapederiving shape descriptors, emphasis (via thresholding) is

A natural way to encode complexity is via entropy. placed on encoding segments with high entropy as they are
more distinctive.

C. Inter-Segment Descriptors

5
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Fig. 3. The cumulative angular function is transformed into a histogram ! -
of angular values. Each bin contains the number of points along the \
cumulative angular function that have angular values that fall within T e S
the bin value. Using this histogram of bin values, the entropy of the
cumulative angular function can be calculated. Fig. 5. The way in which the relationship (in this case an SE2

transformation) between segments is encoded. The two segifieantsl

; ; ; ’ containnc andnc’ critical points respectively. For each critical point
In this case we may write an expression for entropy aslf] S we form a“bundle” of links to allnc’ critical points inS’. In all

there will benc bundles andic x nc’ links in total but only one bundle

Sp = / PDi 1082 PDi d; (1) is shown here. Each bundle, (so long as it contains more than one link)
) defines a rigid transformation between a critical poinSimand the entire

ieD segmentS’. We define each edge in the graph of figure B to be the set

where Pp, is the probability of descriptoi andi takes  of all bundles froms' to S’. This is by intent a redundant way to store
on values in D the set of all descriptor values. The!h® "élationship between the two segments.

descriptor values in this case are the angular values along . S . .
the cumulative angular function. 1) Critical Points: We wish to encode the spatial con-

The integral is calculated from a histogram of theflguratlon between segments, which will form the inter-

cumulative angle function. Each histogram bin contains thgegment descrlptor§ of the laser scan (t_he edg_es of the
number of points along the cumulative angular functiongr"mh in 2. We do this by first extracting points of high cur-

that have angular values that fall within the bin value. Theva?gre alor_19 the segments. We ca[l these cr|t|ca! points”.
entropy follows from 1. Critical points are sharp changes in the cumulative angle
function and they are marked as crosses in the laser patches

shown in Figure 5.

Line Segment | s=18367 < Repeatability of extraction of these critical points is
Wad [ 1 an important consideration. The thresholding on C.A.F
’,-" N-\\ | (cumulative angle function) entropy selects in favor of
[~ [ | segments possessing strong critical points — regions of
Le? - - high curvature likely to be visible over a range of vantage
' | ' points.

2) Segment ConfigurationsThe distance and relative
orientation between critical points form the links (the lines
joining the two segments shown in figure 5 that lock two
segments in a fixed configuration. To determine the relative
orientation between the critical points, we first have to
determine the orientation of the segment. This is done using
simply the largest eigenvector of the segment.

Curve Segment

N

Fig. 4. Segments of laser data (right) are mapped to cumulative angle IV. DESCRIPTORCOMPARISON
functions (left).Sp is calculated from Equation 1. The previous section described the generation of descrip-

tors from a laser patch. This section discusses how these

Figure 4 illustrates the process. First cumulative ang'%escriptors can be Compared to one another.
functions are calculated and then binned and integrated

according to 1. Note how as expected the line segmerft:- S€gment Descriptor Comparison

has a smaller entropy value (1.8) while the more inter- We now describe how two segment descriptors generated
esting curve segment has a larger entropy value (4.3). According to Section IlI-B can be compared to one another.
distinctive segment will have a cumulative angular functionEach segment (a node in the graph of Figure 2) contains
with multiple peaks and troughs while a simple segmenthe CAF function,its entropy measure and a list of critical



points. Considering two such nodes we use three disparity 3) Entropy Disparity: We use relative entropy to mea-
measures based on their properties. sure the similarity between segments. The relative entropy
, or the Kullback-Leibler distance, is given by:

| - K=Y 6 xtn (5)
f i=1 i

where m is the number of bins arfdand /' are the prob-
ability distributions approximated by the angle histograms
an example of which is illustrated in Figure 3. The smaller
‘ the relative entropy, the more similar the distribution of
' the two histograms. When both distributions are equivalent
S K(f||f") = 0. The relative entropy is normalized to lie
within [0, 1] to produce a third scalays.

Fig. 6. Figure 6 shows the disparity between two CAFs of two segments, \p\/a only calculateng (and hence compare segments)
S and S’. CAF is the one-dimensional representation of 2-D segments

which encodes the structure of the points within the segment by thé/"hen both have'larggD' The concept '_S thatitis less Ilkely
change in tangential angles between consecutive points. The differendor segments with high entropy to mismatch compared to

between the two CAFs is the area between the two curves. Segmeng%gments with low entropy. Consider a laser scan of a Iong
that are similar to each other will have similar angular functions and '

correspondingly, the disparity between the two angular functions will beStraight CQfI’idO_I’ represented by two straigh'g Iine_ Segme_ntS'
small. these straight line segments will match easily with straight

line segments from any other laser scans taken at other
1) Angular Function Disparity :By representing a 2- portions of the corridor.

D patch segment as a 1-D shape descriptor, finding the
best fit between two segments reduces from a 3-D search
space[z, y, 0] problem into a 2-D search space [4]. This
is a search problem in the position-rotation spagevj
since scale is fixed in our application. The query curve
is translated vertically and slide horizontally to find the
minimum error between the query curve and the pattern
curve, see Figure 6. This approach is similar to the method
employed by [4], except that their search problem is
in scale-position-rotation space. The differeneég, v),
between CAFs is calculated as

Fig. 7. Segment to Segment matching using the similarity vegtdihe
l triangle represents a perfect match( Identical segments). The figure shows
e(3,7v) = / (Th(s) —Ta(s+ B) + Py)st 2) the similarity between a query segmeSl and all segments from two
0 other scanss’” and S”’. Two close matches are found which are depicted
. . as stars. The axes are angular function similarity measure, matched length
where the two cumulative angular functions denoted’by (atio measure and entropy similarity measure.

and Ty, the position-rotation search space is parameterized
by (8,7) and s parameterizes arc-length around the seg- The above three similarity scalars are stacked in vector

ment. o o _ ns.s' = [m1,m2,m3]*. That describes the degree of similar-
A scalar similarity measurey; lying in [0,1] is then ity betweenS and $’. If S and S’ are identical segments
calculated as ) ns,s Will be [1,1,1]7 In figure 7, the position of every

(3) segment is displayed in-space. The triangle represents
the position of a perfect match with the query segment in
all three similarity measures. The stars correspond to the

2) Match Length Disparity:A second scalar, is cal-  segments that are most similar to the query segment. The

771=1+€

culated as the matched length to total length ratio: asterisks are the positions of other segmentpace.
I(m) -
== 4 B. Edge Comparison
"= 4

As well as comparing the shape characteristics of seg-
wherel(m) is the length of the matched segment portionments, the matching technique described in the next section
and!(T) is the total length of the query segment. will ask if the relationshibetweersegments within a patch
In figure 6, the matched length is the portion of theare similar to those in a test case.

abscissa where there is overlap between the two cumulative As suggested in [22], we determine the similarity be-
angular functions and total length is the length of the queryween the segment-segment links by matching arrays of
cumulative angular function. The larger the portion of thedistances and relative orientations of the segment-segment
segment that is matched (based mn, the more similar edges. In Figure 8, the segment-segment relationships for
the segments are. two laser scans are shown. Due to occlusions, a minority



shape and segment-cluster shape across two scans - this is
akin to finding a largest subgraph 6f(S) in G(S’) and
G(S") in G(S). However, presence of occlusion and partial
observability means nodes and edges are likely to missing.
We seed the search with the best pairiag, ;' >. Each

of the neighbors of segmentin S is compared with the
neighbors of segment: in S’. If a new segment-segment
correspondence is found using the methods of Section IV
and the edges between segments also pass the similarity
test the algorithm continues to examine and compare the
Fig. 8. A method of comparing inter-segment relationships (edges)neighbors of the new connected segments. In this way a

In our determination of similarity between edges, the bundles of linksconnected matching subgraph is built from the two most
that comprise the edges are compared against each other using distance il ' in th h | |
and relative angle criteria. The dark links represent those that have beesimiiar segments in the two patches. We currently employ

successfully matched with links of the other edge. The links are marked@n empirical heuristic to declare two patches similar — if
in black represent links that have not been matched with links of the othefha cardinality of the matching subgraph is greater or equa|
edge. This can be due to occlusions or the segmentation process. L .. .. . .

to two a positive match is signalled. This is fairly stringent
condition as it implies shape finding strong similarities
hetween three or more substantial, complex shapes and
Qﬂeir mutual arrangement being similar in both patches.

of the critical points found in one laser scan are not see
in the other. The links that are successfully matched ar

highlighted in a darker tone. To establish correspondence VI. EXPERIMENTAL RESULTS
of spatial configuration between the segments, a 50 percent 1 examine and demonstrate the effectiveness of our
paring is required. approach, we tested our algorithm in both indoor and

outdoor environments. In the indoor environment, a small
. o _ ATRV-Jnr mobile robot was driven up and down in a loop

We now consider the task of deciding whether a particyiong the stretch of corridor in a building. We note that this
ular scanS matches another sca$i. We are not willing g by no means a large loop or an extremely challenging
to tolerate reliance on scans containing straight lines ogpvironment for contemporary SLAM algorithms but it
‘point features’. We wish to be robust to both occlusion andyges posses some visually confusing properties.
gross changes in view point. Importantly, for the reasons The vehicle camera kept a constant orientation in vehicle
argued in section | we must not require any prior on thecoordinates —looking forward and slightly to the right.
likely transformation betwee and S’. We progress by Every two seconds an image was grabbed and written
discussing segment to segment matching (node to node {g§ gisk. The vehicle was equipped with a standard SICK
the graph of Figure 2) and then move on to segment groupyser, the output of which was also logged along with the
to segment group matching. odometry from the wheel encoders.

We begin by randomly selecting a random segment  Each image was time stamped, processed and finally en-
from the n, segments inS. We then findn; similarity  tered into a database as a collection of feature descriptors.
vectors; 1., betweeni and then; segments inS” as  ysing the image’s time stamp, the corresponding laser scan
described in section IV-A. The best pairing 4, ;" > is s retrieved , processed and entered along side the visual
chosen such that' = arg min; (|| 1 — ;5 [|). information as a collection of spatial descriptors. In this
indoor, experiment, a database of a little under 200 images
was collected. Figure 10 shows the rare but troublesome
failure condition occurring when only visual appearance is
used. Replicas of the same poster were found in different
locations along a corridor. The query image is shown in the
center and a false loop closing event is signalled (albeit a
visually correct match) with the image on the left. However
the spatial processing we have described discredits this

Fig. 9. The alignment process aims to find a match between two graphsmatch while Confirming the second match shown on the
A positive match only occurs if the individual nodes match based on . ]
fight hand side.

the process described in subsection IlI-B and the individual edges matc . .
based on the process described in subsection IV-B. The same equipment and software was used in an out-

door experiment. The ATRV-Jnr mobile robot was driven
The final step of our method seeks to match the graplround a car park in front of a building. Here, a database of
representations of laser patches and is similar to that useldt8 pictures was collected — see Figure 11 — where the
in [22]. It tries to match both the shape and saliencyground is relatively flat. As is common in urban environ-
properties of the segments and their relationships to neighments, there were many replicated small-scale objects, for
boring clusters in the presence of substantial occlusion anexample the white-framed windows are repeated along the
partial observations. In essence we are matching segmeleingth of the building. Once again the combined processing

V. MATCHING




Fig. 10. Image matching using Maximally stable extremal regions and scale saliency regions. The query image is shown in the center and a false loop
closing event is signalled (albeit a visually correct match) with the image on the left. However, the spatial processing we have described in this paper
discredits this match while confirming an alternative visual match shown on the right hand side.

of visual and spatial appearance measurements allowstky comparing both the shape of segments within patches
visually ambiguous situation to be resolved. In these twand their mutual spatial arrangements.
modest experiments we saw ho false positives when using The folding in of spatial information has markedly
both spatial and visual information. We are currently in theimproved performance and has resulted in a robust, useful
process of collecting a more substantial data set with asystem.
order of magnitude more image/laser-patch pairs.
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