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Abstract

The ability to extract a rich set of semantic workspace klfi\ldm sensor data gathered in complex en-
vironments is a fundamental prerequisite to any form of sgimaeasoning in mobile robotics. In this
paper we present an online system for the augmentation of mfagutdoor urban environments with such
higher-order, semantic labels. The system employs a shallpervised classification hierarchy to classify
scene attributes consisting of a mixture of 2D/3D geometnid visual scene information into a range of
different workspace classes. The union of classifier resgorields a rich, composite description of the
local workspace. We present extensive experimental segsihg two large urban data sets collected by our
research platform.
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1. Introduction

Significant advances in recent years in the developmentoafikation and mapping frame-
works have inspired an expectation for mobile robots to afgdn increasingly complex environ-
ments, both autonomously and in concert with human beimggdent years, appearance-based
techniques developed in the computer vision domain havegadeas a valuable complement to
standard SLAM solutions [40,32]. As a result, mapping téghes have reached adolescence in
the sense that low-level geometric representations camitifdr an environment over several
hundred meters of track [26]. However, the maps that areymediare typically agglomerations
of laser points or an arrangement of geometric primitivée(osimply points, lines and planes).
Such representations only have a limited discriminatiyeacéy and fail to adequately represent

1 The work reported in this paper was funded by the SystemsnEaging for Autonomous Systems (SEAS) Defence
Technology Centre (DTC) established by the UK Ministry of@ee.

Preprint submitted to Elsevier 7 July 2008



the subtleties of complex environments. In particularytaee of limited use to the operational
decisions required by an autonomous agent.

We argue that successful environmental interaction in dexnputdoor urban environments
requires at least a rudimentary operational awarenesgjb&hievelsemantiacconcepts. At the
most basic level, such an operational awareness can benetithy automatically extracting
meaningful and pertinent semantic labels from a range adaethata. Consider, for example,
a navigational policy which prefers operation on paveméamppropriate for our ATRV Junior
vehicles) to operating on busy roads. Similarly, explatatan be driven by semantic cues in the
sense that roads, pavements and paths lead to other, ydas#iesting places. The extraction
of appropriate labels thus forms the basis of effective sgimaeasoning.

Bush/Folliage

Fig. 1. Semantic labels for typical urban scenes. The imdgpgt the output produced by the presented system, except
for the text boxes and arrows that were added manually festithtion purposes. Note that the points in the images refer
to 3D points in the robot's workspace. An alternative repntation would be a coloured 3D point cloud, where the
colour encodes the semantic labels.

This paper presents an appearance-based method for aigmaaps of outdoor urban envi-
ronments with higher-order, semantic labels using bothesegpearance and 2D/3D geometry.
A 3D laser scanner is utilised to sense the local workspagmgty and a camera to capture its
visual appearance. In combination these two sensors pravitth source of information with
which to characterise different aspects of the local arepatticular, we will focus on describing
regions of the ground plane, the surface type of walls, aagthsence or otherwise of vehicles
and foliage. The geometric and visual properties of a paeicscene are passed through a shal-
low hierarchy of classifiers each trained to respond to argdésene attribute — like pavement,
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tarmac or bush. The combination of all positive classifaraiyields a composite description of
the scene in question, for exampleath and Grass and Foliagedr ‘Road and Brick-Wall and
Car’, see Fig. 1.

We make several extensions to our previous work [34], aspted at the IEEE International
Conference on Robotics and Automation (ICRA) in 2007. Oassification framework has been
substantially refined and restructured, leading to sigaificavings in computational cost. This
enables us to present here a system which runs online anaiimesd time. Local smoothing of
the classification results is achieved by majority consetssed on automatic image segmen-
tation. Furthermore, we consider the benefits gained bydgieg a much richer set of features
in both 3D geometry and visual appearance and we providealet:tomparison motivating
our final choice. In addition, we elaborate on our method fdomatic 3D laser/vision cross-
calibration. Finally, we present an extensive analysig/sfean performance in the field.

The next section gives a comprehensive account of relatellsw8ection 3 describes the
research platform and data used for the experimental walidaf our approach. This is followed
by a motivation of our choice of workspace labels in Sectio 4lescription of the features
considered as well as the feature extraction stage of ogepsing pipeline is given in Section 5.
Section 6 describes the classification framework. Findlig, efficacy of the system in a real
urban setting is demonstrated in Section 7, along with alddtdiscussion.

2. Related Work

The semantic interpretation of sensor data in the contesdtwitic map building has received
much attention in recent years. The first step usually ire®bhe extraction of suitable features
from the data. Given, for example, 2D laser range data, camgemmetric attributes include
2D lines and corners as well as different moments or hecsistiawn from the distribution of
distance and angle measurements. Assuming that certaBngiemlasses can be characterised
and distinguished by means of the resulting feature vestachine learning techniques [4] are
commonly used to address the implied classification problantinez et al. [24], for example,
classify 2D range scans into classes suciCasridor’ , ‘Room’, and‘Door’, applyingAdaBoost
andHidden Markov ModelsThe respective labels are then assigned to the global sxsitions
leading to a semantic annotation of 2D metric maps of indawirenments. In [8] a rectangular
shape model is used to detect rooms from 2D range data. Amgathl. [1] propose a method
that learns the position of doors in a hallway from 2D lineraegt maps using the expectation-
maximisation (EM) algorithm. The latter problem was alsasidered in [23], where contextual
information is used, by means of relational Markov netwotksclassify 2D line segments in
indoor hallways as beintDoor’ or ‘Wall'. These and other works indicate that augmenting
2D maps of indoor environments with the explicit notion obdg) hallways and rooms has valu-
able benefits for robot navigation, in particular, path piag and localisation, see also [36].
Mainly it allows to represent common structural properéied to refer to them by means of se-
mantics. Similar ideas have been put forward in the conteixtpmlogical map building [21,22],
where the focus has been primarily on the definition of disiiee places and the navigation
between them, often only with limited use of semantics.

Although sufficient for many applications indoors, the imf@tion, semantic or otherwise,
that can be extracted from 2D laser range data is ratheelim& natural extension is to utilise
3D data. In [10], for example, elevation maps are used to @mt@@D maps with different nav-
igational behaviours. The notion &floor’, ‘Wall' and‘Ceiling’ is utilised in [27] to support
3D scan matching in indoor environments. Anguelov et al.u@ a segmentation of 3D data
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to detect cars and classify terrain using Graph CutMarkov Random Field8MRF). The per-
formance of the MRF framework is compared to that obtaineédguSupport Vector Machines
(SVMs). This work is closely related to our approach in tha also employ SVMs to clas-
sify 3D laser data. However, in combining information frowotcomplementary modalities —
2D/3D geometry and visual appearance — our approach gaéneaghacity of providing more
detailed workspace descriptions, such as the surfacesfyipgldings encountered or the nature
of ground traversed.

Over the last decade, a large body of work in computer visias flocused on the seman-
tic interpretation of image content, in particular objeeteattion and recognition as well as
scene description. The resulting algorithms, whether #pply probabilistic feature-based ap-
proaches [30] or use 3D geometric models [31] have matured impressive level. A detailed
overview, however, goes beyond the scope of this paperolildtbe noted that most of these
works do not address the problem of robotic map building angdugh are not directly compa-
rable to the work presented here. However, robot mappindregaently drawn inspiration and
benefit from the field of computer vision. In particular, theewf visual appearance has recently
attracted increasing attention, see for example [33,9isdk et al. [15] use visual appearance
to classify outdoor terrain regarding its traversabilijysomobile robot. In [33] image similarity
is utilised to perform an unsupervised partitioning of madworkspaces and thereby defining
descriptive classes such‘@ark’ and'Building’. Several approaches for the detection of doorsin
office environments using simple geometric models have pegrosed, for example, in [20,35].
Visual appearance has also been successfully appliedatogipal mapping and place recogni-
tion [9], although with limited or no notion of semantics.

Finally, there exists a sizeable amount of work that levesaaycombination of sensor modal-
ities. Douillard et al. [11] present a probabilistic franmWw for object recognition usin@on-
ditional Random Fieldshat supports the integration of arbitrarily many sensdhey present
preliminary results based on image and 2D range data totdeses. In [25] similar sensor
modalities are utilised to classify cars and pedestriah& dlassification is carried out sepa-
rately for image and 2D range data. The results are combipedBayesian sum decision rule.
Several approaches to the classification of traversalititige a monocular camera and a fixed
2D laser range finder that faces downwards in front of thecoleh#2,38]. The assumption is
that the 3D pose is known or can be determined with sufficiegttipion. As a consequence, the
laser measurements from different poses can be accumalatetbrm a 3D point cloud, from
which features like planarity or goodness of plane-fit casdraputed. Together with visual ap-
pearance, these features are used to classify whether trentgrrain in front of the vehicle is
traversable. These approaches are related to our work titheya draw their features from im-
age as well as 3D laser range data. However, multi-classifitadion is not considered. Similar
work by Happold et al. [16] utilise 3D data from stereo visalong with appearance features
using a neural network for terrain classification.

3. Robot System Setup and Urban Data Sets

The work presented in this paper makes use of two extenstaesdts, spanning nearly 18 km
of track, gathered with our research platfddarge (ATRV, Fig. 2). The robot is equipped with a
colour camera (Marlin, Allied Vision Technologies), aniiti@ sensor (XSens), a GPS sensor and
odometry from wheel encoders. The camera records imaghs teft, the right and the front of
the robotin a pre-defined pan-cycle triggered by vehiclewetoy at 1.5 metre intervals. 3D laser
data are acquired using a 2D laser range finder (SICK) thatrismith one degree resolution
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(180 degree range). It is mounted in a reciprocating cradie by a constant velocity motor,
see also [17]. Data were gathered in two different locatidesicho/Oxford(13.2 km, 16,000
images) and th®xford Science Par{3.3 km, 8536 images), see also Fig. 2.
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Fig. 2. Aerial map of thderichodata set - 13.2 km, 16000 imagé={t), and theOxford Science Partlata set - 3.3 km,
8536 imagesRight). Vehicle trajectories are marked in whitdiddle: Marge- our ATRV research platform

4. Workspace Classes in Urban Environments

When navigating in an urban context a higher-order knowdeafgthe environment is indis-
pensable: self-preservation dictates avoidance of higihamic regions such as roads; robust
localisation depends on distinguishing features beyoadedhbognition of ubiquitous general ob-
jects such a&round’, ‘Wall’ or ‘House’. This necessity motivates the definition of classes and
the closely linked selection of features in this work. Ititigly, in an urban environment places
can be distinguished by the type of ground that is preseatcttour and texture of surround-
ing houses (or, more appropriately, of surrounding walig) the presence or absence of other
features such as bushes or trees. The detection of carsrgnovstationary) is also beneficial.
These considerations give rise to the classes defined irlTab.

| |Class Name |Description |

Brick red or yellow brick

= |Nat. Stone natural stone, sandstone

= |Concrete modern (e.g. concrete, glass)
Rendered rendered, plastered, painted

- Pavement tiled, patched

S Dirt Path sand, dirt, gravel

o|Grass grass

O|Tarmac common road, pavement

2 Bush or Foliaggbushes and parts of trees

= |Vehicle cars or vans

Table 1: Workspace classes.
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5. Geometric and Appearance Features

The classes as defined in Tab. 1 suggest that both visual ramgeaand 2D/3D geometric
features are suitable to facilitate reliable classifigatiBor example, it seems straightforward
to distinguish betweetwWall' and‘Ground’ using the 3D plane normal of the ‘neighbourhood’
of a particular 3D point, but discriminating differei@round’ classes using only 3D geometry
may be difficult. As described in Sec. 3, our robot platforragsiipped with a monocular colour
camera and a 3D laser range finder, which supply visual dateefisas direct measurements
of 3D geometry. Knowing the intrinsic parameters of the caaraes well as the relative pose
between the two sensors allows for meaningful combinatfaih@ information from both. To
this end, we developed an accurate cross-calibration rddtiad automatically determines the
3D transformation between the two sensors (Sec. 5.1). Aqisecuence, each laser measure-
ment, i.e. 3D point, is augmented with appearance infoondtom the image data. The feature
extraction takes as input a colour image and a 3D point cland,compiles a feature vector
incorporating 3D geometric (Sec. 5.2) as well as 2D geomatrd visual appearance (Sec. 5.3)
features. Sec. 5.4 summarises the overall feature extrgutocess and the different feature types
considered.

5.1. Camera and 3D Laser Cross-Calibration

In order to use the information of both a monocular colour esarand a 3D laser range finder
in a common frame, the relative position between these semsast be estimated. Our first
approach was to use a planar target as proposed in [28]. Howee found that the accuracy
of the target localisation in the 3D point cloud is limitededio (A) the discrete nature of the
spatial sampling process as performed by a laser scanme(Barthe well-known problem of
mixed measurements at depth discontinuities. (A) mearns3ihameasurements - depending
on the angular resolution and the distance to the targetbb@an only be close to the object’s
boundaries, but never represent its full physical exteraddition, (B) means that measurements
that fall on edges frequently return distance readingsat@abetween the actual object and the
background, but lack physical evidence. Together thisesthge localisation of the planar target
in a 3D point cloud and, in turn, the relative pose estimatietween camera and 3D laser
scanner to not provide the accuracy we sought for our agmita Therefore, we developed
the cross-calibration scheme described here. The printugrdiage is that, given the proposed
calibration target, the localisation of the target objecthie 3D point cloud is performed using
robust plane fitting, which is more precise than finding jgattir corner points or edges directly
or assuming that the 3D measurements adequately représenbject’s actual size. In fact, if
the calibration object is observed (scanned) long enolghrdspective planes can be sampled
with arbitrary density, and thus, arbitrarily accurateng@stimates can be obtained. Note, since
this process is performed while stationary the only soufeamr is the measurement noise of
the laser range finder. Assuming that this noise has zeratewill be compensated for by the
plane estimation.

The objective of our approach is to first automatically daiee the 3D corner points of both
target rectangles, i.e. in the foreground (red) and in tllxgpund (white-blue transition), from
the image as well as the laser data, see Fig. 3. The resuliingoBher correspondences be-
tween the laser and camera coordinate frame are then usednjoute the 3D transformation
between the two sensors. From theser Range Data 3D corner points are determined using
intersections of planes, which are automatically extidciging iterative plane fitting based on
MLESAC [39]. Fig. 3 (right) shows the results of this segnagiain step. Note that for all but the
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background plane only circular areas around the planeseei gravity are used for the final
plane fitting to avoid errors induced by plane segment mardiising the topology of the cali-
bration target, the 3D corner points are determined by pfdaee and plane-line intersections.
The final step applies constrained non-linear optimisatiothe 3D point positions to improve
the compliance with the calibration target, i.e. the sidgyth of the target rectangles as well as
their inner angles.

Fig. 3. Left: Our 3D calibration target as ‘seen’ by the camé&tht: The target as ‘seen’ by the 3D laser scanner. Also
shown are the 3D planes (grey) and the wire frame model (it were automatically segmented (see text below).

From thelmage Data 3D corner points are determined by means of projective géym
After the outlines of the target rectangles have been setgrdgethe resulting 2D line segments
are used to reconstruct the 3D corner points as describ88]jnThe sought corner points can be
determined up to scale, which is resolved using the knowa@&izhe 3D rectangles. As a final
step (and similar to the case of laser data), we use constraion-linear optimisation to allow
small deviations of the plane normal and the corner pointthensensor in order to improve
the 3D reconstruction. Finally, given the 3D corner corcesfences between the lagér and
camerap’, coordinate frame, non-linear optimisation is employed ntd the parameters fak
andt, that minimise the sum of the squared differences betwgemdp,, where:

ph =R-p\ +t, i=1.8.
The resulting minimum error is in the order of four to twentyllimetres per 3D point. More
interestingly, the pixel error gf; andp’, back-projected into the image is less than one pixel for
all points.

Fig. 4. Camera-laser cross-calibratidweft: A typical 3D laser point-cloud. Laser points within the cam&ustum are
highlighted (white). The frustum outlines have been addedlfrity. Right: The respective 3D points (from within the
frustum) as projected into the corresponding camera image.



5.2. Extracting Geometric Features from 3D Laser Data

Given a colour image captured at time 3D laser points are accumulated over a time window
(t; — AT, tr). The resulting 3D point cloud refers to the same scene teatamera observed at
tr. The'Wall’ and‘Ground’ classes in Tab. 1 can be approximated geometrically wittangp!
model. Therefore, the 3D point cloud is first segmented itdogr patches following a divide-
and-conquer approach outlined in [41]. The given point dlsudiscretised into cubic cells and
planes are fitted locally using MLESAC [39]. Plane patcheioled in neighbouring cells are
merged according to the following constraints, which eetatthe relative surface orientation and
the distance between plane segments:

|n; - ;| > arccos(maz) and %(dij +dji) < dmax

n; andn; denote the plane normals in cellendj and *’ denotes the scalar produet;;
andd;; denote the distances from the centre of gravity (cog) of daeepto its orthogonal
projection onto the other plane (Fig. D)., andd,,., denote an angle and distance threshold,
respectively. Finally, merged plane patches are kept,ay tbomprise more thaw,,;,, laser
points. A typical result of this segmentation process issshim Fig. 6.

Orientation Translation

4_"1' ni% *nj

n*%? L] ]

Fig. 5. Plane-merging constraints for two adjacent cubliis ¢andj. Left: for orientation.Right: for translation. n -
plane normal, CoG - centre of gravity

From the segmented plane patches and the respective 33 parterive the following 3D geo-

metric features that are assigned to each individual 3Dtpoin

— Absolute cosine distance between the normal of the respegaiane patch and the normal
of the ground planery. The z-axis of the coordinate system (CS) of the laser scaisne
aligned with the z-axis of the robot CS, and is pointing uplgaAssuming local approximate
planarity,r is thus given by the z-axis, i.ex = [00 1]7.

— Goodness of plane fit: ratio of smallest/largest’SV

— Patch size: largest 2nd largest SV, normalised by number of points and subjectitoeshold.

— Height of 3D point wrt. ground plane and subject to a thré&kho

Note that finally we aim at classifying single 3D points asevied by both the camera and
the 3D laser range finder. The fact that certain 3D points $tem the same planar patch and
that 3D point classes should be spatially consistent fat# a post-processing step by means
of spatial smoothing using, for examphajority Voting(Sec. 6.4 and 7.3) drlarkov Random
Fields

5.3. Extracting Appearance Features from Image Data

The processing steps as described so far provide 3D lasaispaiich lie on planes fitted to
the original laser data, representing the scene depictéttirmage and beyond. 3D points that

2 SV - singular value, comes from the final plane fitting using>sV
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Fig. 6.Left: Original 3D point cloudRight: Approximation of the 3D point cloud by planar patches as geed by the
segmentation algorithm.

would not project into the image, because they lie outsideettmera’s viewing frustum, are dis-

carded using frustum culling. The remaining 3D points amqmted into the image (Fig. 4) and

constitute 2D points of interest (POI). For each of the P@pgearance features are calculated
over alocal neighbourhood in the image. These featuregitegeith 2D geometric attributes are
assigned to the feature vector of the respective 3D poirthis'work we consider the following
appearance and 2D geometric features:

— Hue and saturation histograms (15 bins each) to charsetesiour appearance using a fixed-
size neighbourhood afs x 15 pixels.

— Standard deviation of hue and saturation as a simple &ftature using a fixed-size neigh-
bourhood ofl5 x 15 pixels.

— SURF descriptors [3] for the POls. The scale, and thus treedi the local neighbourhood,
is inversely proportional to the distance of the respe@®eoints. These descriptors capture
primarily texture properties, and are to a certain degrakestighting and view pointinvariant.

— Normalised position of the 2D POls, as proposed by Hoienh[@B&

5.4. Summary

Fig. 7 shows a flowchart of the processing pipeline that weleynfor feature extraction.
The 2D/3D geometric and appearance-based features cmwiitethis work are summarised
in Tab. 2. This information is used to learn appropriatesifeess that distinguish between the
different classes as defined in Tab. 1 (Sec. 4). We addrespitbblem usingsupport Vector
Machinesn Sec. 6, which describes our classification framework.do.S.2 we investigate the
influence of different feature combinations on the classiiion performance.

| Feature Type | Dims. | Feature Descriptions |
3D Geometry 1 Orientation of surface normal of local planar patch
1 Quality of plane fit
1 Size of planar patch
1 Height of 3D point wrt. the ground plane
2D Geometry 2 Location in image as normalised x and y positipn
Colour 30 |Hue & saturation histograms (15 bins)
Texture 2 Standard deviation of hue & saturation

64  |SURF descriptors
Table 2: Summary of the features considered for classificati
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(i) Forimagel taken at pose; and timet;:
(a) Obtain 3D laser datd( ¢t;,) from time windowt; — At < t;, < tr
(i) Segment planar patches from 3D point cloud, keep patthat comprise
more thanV,,,;,, points. Note thatV,,;,, is different from the inlier threshold
used for MLESAC.
(iii) Filter out 3D points that do not lie within the viewingustum
of the camera (frustum culling).
(iv) For each of the remaining 3D points, see also Tab. 2:
(a) Assign the 3D geometric features from the respectiveepgmtch.
(b) Project the 3D point into the image.
(c) Compute 2D geometric, colour and texture features
from local neighbourhood.

Fig. 7. The processing pipeline employed for feature etitvac

6. Classification Framework

In [34] we employ a bank oBupport Vector MachingSVMs) for classification. This choice
was predominantly motivated by the wide-ranging succeashieved by SVM classifiers. The
classification framework adopted here extends our prewaar& by introducing a hierarchi-
cal combination of two distinct discriminative approach&sthe top of the hierarchy a Bayes
classifier is employed to distinguish between ground andgronnd classes. For each of these
categories a combination of SVMs yields the final class d®uss In addition, the class posterior
from the raw SVM output is estimated such that the final cfecsdion amounts to a maximum
a posterioridecision amongst the individual classes [29]. An illustratof the classification
framework is given in Fig. 8. The hierarchical approach jes a speed-up of factor two com-
pared to the system presented in [34] and thus constitutggméicant gain in terms of online
workspace classification. The remainder of this sectiorritess the individual components of
this framework.

6.1. Bayes Decision Rule for Ground/Non-Ground Separation

The first step in the classification hierarchy separatesrgtéom non-ground classes. Intu-
itively, the height (wrt. ground) of the datum as well as thitation of the plane patch the
datum is associated with will be the most conducive to thippse. For reasons of computa-
tional efficiency we propose a simple thresholding schenthese features. Similar approaches
operating on different features have been proposed, fanpba in [37,43]. In the work pre-
sented here, thresholds are determined such that theimgspfbbability of misclassification is
minimised. This is achieved by employing the Bayes decisida[12]. Suppose a feature vector
x € R2 derives from two classe€§'; and C,. A given threshold divides the feature space into
two adjacent and non-overlapping volumés,and V. The probability of error is given by

p(error) = /v p(x, C1)dz + /V p(x, Co)dz, (1)

wherep(x, C;) represents the joint probability of featuteand clas<C;. The first and second
terms represent the cumulative density@k, C;) over the volumel, and the cumulative den-
sity of p(x, Cs) over the volumel/; . Intuitively, the probability of error is minimised whenis
assigned to that class for whiglix, C') is at a maximum. In this case the threshold is estimated
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p(C | data) | p(C | data)| p(C | data) p(C | data)

MAP MAP

[d [d
Class Decision Class Decision

Fig. 8. The classification hierarchy employed in this work.

from the available training data(error) is therefore estimated directly for a putative set of
threshold values such that
FP+ FN
- )
where, FP, FN and N denote the number of false positives, false negatives amdotial
number of data in the training set, respectively. This iealy analogous to Equation 1. Thus,
the value which minimises Equation 2 is chosen for furthassiffication.

p(error) =~

6.2. Support Vector Machine Classification

Support Vector Machind§VMs) are based on a linear discriminant framework whichsaio
maximise the margin between two classes. They are a pofhdarecsince the model parameters
are found by solving a convex optimisation problem. Thisdeairable property since it implies
that the final classifier is guaranteed to be the best feadibdegiminant given the training data.
A detailed discussion of SVM training and classificatiors lmitside the remit of this papér
However, pertinent to the remainder of this section is aftmi@rview of the mechanism by
which future predictions are made.

Consider a set ofV training dataX = {x,...,xx}, wherex € R? denotes a datum in
d-dimensional feature space. Associated wititomes a set of labelg = {y1,...,y~} where
eachy; € {—1,1}. Once training has been completed, predictions on futusemhtions are
made based on the signed distance of the observed feattoefvem the optimal hyperplane [7],
such that:

N
F0) = iy K (%, %) + b, (3)
=1

3 For more details on SVM-classification the interested readeeferred to, for example, [4] or [7].
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whereq; refers to a Lagrange multiplier associated with datuimdenotes a bias parameter
and K (x;, x;) denotes the kernel function. Both andb are obtained by training. Note that,
in practice,«; will only be non-zero for a subset of the training data. Memsh# this subset
are referred to as theupport vectorof the classifier. The kernel function amounts to a scalar
product between two data, which have been transformed froiimensional feature space into
some higher dimensional space. The nature of this mappitvgele spaces is inherent in the
choice of kernel and need not be specified explicitly gbmel trick).

One disadvantage of SVMs lies in the necessary choice ofdheekand the computational
burden usually associated with determining the corresipgruarameters. In this work we em-
ploy a Gaussian kernel [7], which is a common choice and has find to perform well in a
variety of applications. The kernel parameter as well asdetioff parameter specifying a tol-
erance for misclassifications during training are commaletermined by grid-search over the
parameter space.

SVMs are inherently binary classifiers. However, severa¢ates exist by which to extend the
SVM framework to multi-class problems. In this work, muitass classification is performed by
training a chain of binary classifiers — one for each classenasversus-all [7].

6.3. Probabilistic Calibration

The use of an inherently binary classification frameworkhsas SVMs in a one-versus-all
configuration comes with a caveat: the possibility of indial classifiers assigning an input to
multiple classes simultaneously is addressed using a wiakes-all heuristic where the winner
is the classification resulting in the greatest margin {he.largest distance from the separating
hyperplane). Even though satisfactory results are olddmpractice, there is no guarantee that
the real valued quantities representing the margins fderift classifiers will have appropri-
ate scales. This problem can be addressed by a procesedeferas probabilistic calibration:
the distance of a data point from the separating hyperpk&neapped onto a posterior proba-
bility p(C|f(x)) wheref(.) represents the classification function resulting in an élibcated)
distance from the separating hyperplane for each data pdicft Equation 3). In this work we
adopt a method of probabilistic calibration introduced atH29]. In this approach a parametric
model is fitted directly to the posterior probabilityC| f ()). Inspired by empirical data on the
class-conditional densities between the margins — Plattmies that they take an exponential
form — the parametric model takes the form of a sigmoid asikdavhen applying Bayes’ rule
to two exponentials.

1
- 1+exp(Af(z) + B)
The parameters A and B are found by minimising the negatigdikelihood of the training

data. In this work we employ the same model-trust minimisatilgorithm used by Platt. The
datum is finally assigned to the class with the maximum pmstprobability.

p(C[f(x)) (4)

6.4. Voted SVM Classification

The multi-class SVM approach outlined so far does not take account information about
the spatial cohesion of structures and objects in the redtwdoted SVM classification incor-
porates this information by assigning a given neighboudrafalata a class label determined by
majority consensus of individuahdependentlassifications. In particular, given the probabilis-
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tic calibration of the classifiers, weightedmajority vote can be performed where the estimated
class labelU is given by

C =max ) p(Cilf(xr)) (5)

reN

where N refers to the set of points in the neighbourhood a(@;|f(x,)) is the probability
of class: given the uncalibrated SVM outpytx) for datumz (cf. Equation 3). The nature of
the data available allows a natural determination of a neghhood sefV: rather than fixing a
distance threshold, neighbourhoods are formed over regibcontiguous appearance within the
appropriate image. This patch-segmentation is performéahaatically for the results shown in
the next section using an off-the-shelf image segmentatiethod [14], see Fig. 9 for segmen-
tation examples.

Fig. 9. Examples for the image segmentation usedviajority \Votingin our online classification system.

7. Experimental Results and Evaluation in Urban Environmerts

Previous sections have introduced the classification fnaorleand a selection of features.
In the following we present results obtained when applyhgproposed approach to real data
as gathered by a mobile robot. Throughout this sectionJémehodataset is used for training
purposes. Th®xford Science Parklata are used as an independent test set. We proceed by
deriving the Bayes optimal threshold required for the teelef our classification hierarchy (see
Section 6.1). This is followed in Section 7.2 by a descriptid results obtained with different
combinations of features introduced in Section 5. Finalging a set of selected features, we
present more detailed results of system performance ord@péndent test set.

7.1. Determining the Bayes Optimal Decision Threshold

The Bayes optimal threshold required for ground/non-gdsaparation was determined using
approximately 201,000 unbalanced data from Yagchodataset. As indicated in Section 6.1,
each datum here consists of a two-element vector assowidtted 3D point and containing the
relative height above ground as well as the orientationeégsociated plane. The left and middle
panel of Fig. 10 show the histograms corresponding to thellisionsp(x, C1) andp(x, C3).

The right panel illustrates the correspondjiigrror) estimated according to Equation 2 using
a grid search with a resolution @f0 steps per dimension. The estimate of the Bayes optimal
decision threshold results in a mis-classification rateppfaximately 2.9%.
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Fig. 10. Left, Middle: The joint densities as estimated from training data. Nogedifference in scaleRight: The
estimate ofp(error). The dashed vertical line indicates the threshold whichimiges the misclassification rate. The
cosine-distance of a patch is derived from the normal of taeepof which a point is a member and measured wrt. the
normal of the ground plane.

7.2. Feature-Set Selection

Section 5 provided a selection of features amongst whiclmé@se. The purpose of this sec-
tion is to provide an intuition of how system performanceieswith the choice of feature
combinations. Rather than provide a feature-by-featuedyars, we aim to show that a col-
lection of simple colour-based features and a single gederfeiature provides a reasonable
speed/performance trade-off compared to more elaborateréesets. For this purpose we have
defined four distinct combinations of features as detaitetiaib. 3, which will provide the input
for SVM training and classification.

Name of Feature| Dimen- Description
Set sion
Minimal 33 Orientation of the surface normal of the local plane patchnmalisedz— and
y positions within the image, hue- and saturation histograms
ICRAO07 35 All features of theMinimal set, standard deviations of hue/saturation |his-
tograms. This is identical to the feature set used in [34infrohere it takes
its name.
Extended 36 All features of theMinimal set, goodness of plane fit, plane patch size, height
Geometry of 3D point wrt. ground plane.
Ext. Geom. 100 |All the features of th&Extended Geometiset, SURF descriptors for additional
and Texture texture information.

Table 3: Feature sets considered in our comparison.

SVM training was conducted using tderichodata set . The appropriate kernel width and
the regularisation parameter (i.e. the tolerance for ragsifications) were determined using a
grid-search over a section of the parameter space with dileeefoss-validation. The grid-search
was conducted with 8,000 training data per class. The date balanced so that training was
conducted at an equal ratio of positive to negative examples parameter-set resulting in the
highest mean classification accuracy was chosen for eash atal the corresponding classifier
was re-trained using the entire training set of 8,000 datatp.dProbabilistic calibration for each
class was performed as per Section 6.3 using a hold-out 008f data, again with an equal
ratio of positive to negative data. Our comparison of featsgts is based on the ability of the
resulting classifiers to separate the relevant class frbottar classes. To this end we consider

4 SVM training and classification were performed using SVMitifl9].
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the receiver operating characteristics (ROC) for the diass obtained after training using the
various feature sets for every class considered in oursy$twve-fold cross-validation gives rise
to five ROC curves from five independent validation sets fergwodel considered. Therefore,
for every feature set considered, a mean ROC curve was ebt&m every class by threshold
averaging [13]. These mean ROC curves are shown in Fig. YXTl&adty we avoid the inclusion
of error-bars in Fig. 11. Instead, an indication of the Maitity of classifier response due to the
use of different sample sets during cross-validation isviged in the form of the mean and the
standard error of tharea under the ROC cun{f@UC). The AUC can be interpreted as equivalent
to the probability that the classifier will rank a randomlyoskn positive instance higher than
a randomly chosen negative instance [13] and provides aetdent single-figure measure of
classifier performance commonly used in the machine legre@mmunity [5]. The mean and
standard error of the AUC have been calculated for everyfeatet and class as outlined in [5]
and are provided in Table 5.

It should be noted that reasonable performance is achievedsaall classes even for the worst
feature set. However, the richest feature gatt¢nded Geometry And Textuedways performs
as well as or better than the others — an intuitive resultesthe additional information should,
by design, aid class separation. Performance gains wiflecedo the most basic feature set
(Minimal) are particularly noticeable for tH&armac’ and‘Modern/Glass Wall'classes, where
the added texture information appears to contribute siamfly towards the difference. More
marginal improvements are achieved fdat. Stone Wall'and‘Plastered Wall: No noticeable
improvement is obtained foGrass’, ‘Paved’, ‘Dirt Track’, ‘Brick Wall’ or ‘Vehicle'. A further
point to note is the consistently equal performance of tassifiers based on tiinimal and the
ICRAOQ7feature sets. This implies that the standard deviationtagued in thelCRAQO7feature
set do not contribute to class separation and are thus sumesfl— this is another intuitive
result since the information is already contained in théogisams themselves and is therefore
redundant.

|C|assifier |Accuracy [%] |Precision [%]|Recal| [%]|
Grass 97.6 97.8 97.4
Paved 81.0 78.8 84.8
Dirt s 82.1 81.7 82.7
Tarmac 88.7 85.5 93.2
Brick Wall 75.7 72.3 83.3
Nat. Stone Wall 84.5 84.4 84.7
Modem/Glass Wall ~ 80.0 74.9 90.4
Rendered Wall 89.6 84.8 96.5
Bushes/Foliage 91.8 92.6 90.9
\ehicles 83.4 82.9 84.2

Table 4: Classifier performance on a balanced hold-out kehtitom theJerichodata set (2000 data per class). The
classifiers are based on thénimal feature set.

In summary, the inclusion of richer geometric and textuasdul information only significantly
improves the classification result in two cases. For all basé two classes tiMdinimal feature
set, based on colour and basic geometry only, remains a ditivgpalternative. However, there
exists a significant difference in computational cost irhtbie SVM classification and compu-
tation of features. The complexity of SVM classificatiordéM - N), whereM is the number
of support vectors (SVs) anil is the dimension of the feature vectérsn our experiments we

5 In generalN is the number of operations necessary to evaluate the déstarone support vector, which in our case is
the dimension of the feature vector.
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found the number of SVs for the classifiers to be of the sameradross the different feature
sets. Thus, the dominating factor on SVM classification tiore is the dimension of the feature
vector. That means that with less than half the number ofifeatfor theMinimal feature set
as compared to the largest (Table 3), the respective SVMifitzgion is more than twice as
fast. This implies a considerable speed-up, given that YHd Elassification using th&linimal
feature set takes about 1.8 seconds on average, as statail h. Tn addition, extracting more
complex textural features like SURF descriptors is comjputally expensive due to the rela-
tively large number of points-of-interest (POIs) consatbm the presented system. Generally,
our system produces of the order of 1500 POls per image. Ifpadson, using an image based
POI detector usually only 100-400 POls are found, often IEssisequently, the computation of
SURF descriptors in our system would increase the overatigasing time, as given in Tab. 4,
by about 20 percent. Therefore, with a view towards reaétmarformance, a decision was made
to trade a limited gain in classification accuracy for a ntgajain in computational speed by
adopting theMinimal feature set for this system. Performance figures for the firmlretrained
using all available training data) classifiers as applied tealanced hold-out set are given in

Sec. 7.6.
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Fig. 11. SVM-ROC curves per class for the feature sets cemsiiMinimal (blue, crosses)CRAOQ7(green, circles),
Extended Geometiyed, squaresExtended Geometry and Textorange, diamonds). Each curve represents a combi-
nation of results from five independent validation sets aainbd by threshold sampling [13].
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Fig. 11 continued: SVM-ROC curves per class for the featate sonsidered.
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Ext. Ext. Geom.

Minimal ICRAO7
Feature Set Geometry and Texture

Class AUC AUC AUC AUC

Mean| Std. Error| Mean| Std. Error| Mean| Std. Error| Mean| Std. Error|
Grass 0.9968 + 0.0006 |0.9968 + 0.0006 [0.9957 + 0.0013 |0.9969 + 0.0016
Paved 0.9102 + 0.0094 |0.9124 + 0.0095 [0.9127 + 0.0225 |0.9281 + 0.0208
Dirt 0.9077 + 0.0118 [0.9050 + 0.0066 {0.9093 + 0.0332 {0.9360 4+ 0.0447
Tarmac 0.9513 + 0.0088 [0.9531 + 0.0084 (0.9825 + 0.0063 {0.9946 + 0.0014
Brick Wall 0.9597 + 0.0044 |0.9601 + 0.0044 {0.9032 + 0.0268 |0.9539 + 0.0230

Nat. Stone Wall |{0.9588 + 0.0086 |0.9549 + 0.0056 |0.9730Q + 0.0138 |0.9879 £ 0.0052
Mod./Glass Wall |{0.9074 + 0.0155 |0.9059 + 0.0160 |0.9064 + 0.0472 |0.9647 £ 0.0210
Rendered Wall 0.9544 + 0.0093 |0.9543 + 0.0095 [0.9559 + 0.0173 |0.977Q & 0.0070
Bush/Foliage 0.9821 + 0.0072 |0.9826 + 0.0068 [0.9717 £ 0.0147 |0.9837 + 0.0086
Vehicle 0.968( + 0.0062 [0.9685 + 0.0062 [0.9512 + 0.0209 (0.9573 & 0.0234

Table 5: Mean and standard error of the area under the cutv€)As derived from five-fold cross-validation. The
corresponding mean ROC curves are shown in Fig. 11. Seeotredéfails.

Class Details Point-Wise Voted

Name| # Patches| # Points|| Precision [%] | Recall [%] || Precision [%)] | Recall [%]
Gr 99 5393 94.3 91.3 95.3 95.4
Pa 466 11342 21.6 61.9 22.2 69.0
Di 147 7988 37.1 83.4 41.5 84.6
Ta 907 65914 89.8 47.5 92.0 46.5
Br 480 18802 31.0 21.5 32.0 21.2
Na 1760 50739 66.7 56.7 68.6 64.5
Co 437 13037 17.6 17.3 20.6 15.7
Re 469 16844 28.2 42.2 31.1 44.2
Bu 181 8364 66.0 61.4 71.0 66.2
Ve 169 4499 325 75.0 35.4 84.6

Legend for class shortcut&rass,Paved, Dirt Path,Tarmac,Brick Wall,

Natural Stone WallConcrete Wall,Rendered WallBush/Foliage Vehicle

Table 6: Classification results for ti@xford Science Par#lata: Original Classes.

7.3. Discussion of the Point-Based Classification Performance

So far in this section the Bayes optimal threshold for gréood-ground classification has
been obtained, an appropriate feature set has been setlradedassifiers have been trained
together with their respective probabilistic calibrasohus, all required components of our
classification framework (cf. Fig. 8) are in place. The galisation performance of the entire
system has been tested using labelled data fron®ttferd Science Parkata set (ca. 203,000
data). It should be noted that our test data are unbalancétk isense that there are many more
instances of some classes than others, reflecting thefiveefeequency in the world. We delib-
erately chose not to balance the data because such an @mluatre accurately reflects system
performance as obtained online. However, as a consequaarée;mance figures such as overall
or per-classaccuracyare not informative since they mostly represent classif&fgpmance on
the largest class. Instead, we quote the per-gesssionandrecall. Detailed numerical results
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of system performance, for both point-wise classificatiang voted classification, using classes
as outlined in Section 4 can be found in Tab. 6. We also presentnplementary set of results
in the form of confusion matrices obtained for voted-SVMssiéication in Fig. 12. These ma-
trices are normalised, on one hand, such that the valueg #iendiagonals represent per-class
precisionand, on the other hand, such that the values along the diEgmmesent per-class
recall. Thus, the former provides information (along the rows) owheliable the given labels
are compared to ground truth — i.e. how much trust can we pheiobtained labels — whereas
the latter provides information (along the columns) of hoellground-truth data are retrieved.

N N
i Ground Truth N o@\&?} ?}\$§§§' N @\$®¢\’§b$§;&
£ o > Q,o@,é(/ Ny *?}zg/‘ o o > Q,g&(\,b(, & @Qéé\ebée«obe
£ PSSRSO S S RS SR S S
g G TR X GRTPTRF PF N |
Grass . ‘ ‘
Paved | 0.8 0.8
Dirt Path |
Tarmac 06 0.6
Brick Wall

Nat. Stone Wall | . 0.4 - 1 0.4

Concrete Wall |
Rendered Wall + b . | 02

Bush/Foliage | . ’ ] :
Vehicle |

0 0

Fig. 12. Confusion matrices fdDxford Science Parklata obtained using voted-SVM classificatidreft: Rows are

normalised such that the diagonal represengsision Right: Columns are normalised such that the diagonal represents
recall.

Tab. 6 indicates good precision/recall performance in thietpwise classification dfarmac’,
‘Nat. Stone Wall'and'Bush’. Results forGrass'’ are particularly encouraging. This is attributed
to the significant difference in colour between grass an@roginound-classes. In comparison,
performance of most wall classes other that. Stone Wall'is poor in both precision and
recall.'Brick Wall’, ‘Concrete Wall, ‘Rendered Wall'as well asPaved’and‘Dirt Track’ suffer
from relatively low precision, implying a high false posdirate. While considering the point-
wise classification results it should also be noted thatxpseted, the individual performance
in precision and recall is consistently worse comparedababtained on the balanced hold-out
data (cf. Tab. 4). This is primarily due to the skew in the nemtif data for each class presentin
the test set. It stands to reason that classifiers trained usibalanced data might perform better
in an unbalanced system. We leave this to future work.

7.4. Incorporating SVM Majority Voting for Patch Classification

Substantial improvements in performance can be obtaineshapplying voted-SVM classi-
fication where local neighbourhoods are determined auioaligtas described in Section 6.4.
Tab. 6 reveals overall substantial increases in Ippitisionandrecall with only three classes
suffering marginally in recall. In this case the image segtaton parameters were determined
empirically by inspection of segmentation performancetandriginal training data. However,
significantly larger improvements in performance have heeserved when using manually seg-
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mented data. It therefore stands to reason that furtherinepnents may be obtained when the
optimal image segmentation parameters are determinedlepé@mdent test data.

Fig. 13. Example for the majority vote based on patches aétexd by image segmentation.

Inspection of Fig. 12 reveals both confusion matrices torbadlly diagonally dominant. Good
separation is achieved between ground and non-groundeslagth a misclassification rate of
1.5%. This is comparable to the figure obtained for the tngjisiet in Section 7.1. The strong per-
formance in precision for th&rass’, ‘Tarmac’, ‘Nat. Stone Walland‘Bush’ classes is mirrored
in the left panel of Fig. 12. In comparison, performance ofstmaall classes is poor. Consid-
erable confusion exists amongst the wall classes wigeiek Wall’ and‘Nat. Stone Wall'are
commonly confused as well &oncrete Wall’and‘Rendered Wall’ Further, Tarmac'’ is com-
monly mistaken for bottPaved’ and‘Dirt Track’. This again is attributed to a similarity in the
colour profiles between these respective classes. In @nstaong recall performance is ob-
tained for'Grass’, ‘Paved;, ‘Dirt Path’, ‘Bush/Foliage’and‘Vehicle’ (cf. left panel of Fig. 12).
However, the considerable confusion amongst several ofificlasses is also evident here.

Class Details Point-Wise Voted

Name| # Patches| # Points|| Precision [%] | Recall [%] || Precision [%] | Recall [%]
Gr 99 5393 94.7 92.5 96.6 98.1
Ta 1373 77256 97.5 82.7 97.7 89.0
Di 147 7988 345 85.2 46.4 84.8
Te 2240 69541 81.4 71.1 82.7 735
Sm 906 29881 53.4 59.3 56.9 64.4
Bu 181 8364 56.8 58.9 60.6 62.8
Ve 169 4499 35.1 76.8 43.7 80.1

Legend for class shortcut&rass,Tarmac/PavedDirt Path,
Textured Wall,Smooth Wall, Bush/Foliage Vehicle

Table 7: Classification results for ti@xford Science Parllata: Meta Classes.

7.5. Combination of Classes

Thus, although broadly correct classifications are obthittee results presented so far indi-
cate that the system can not discriminate adequately batamesral of our chosen workspace
classes. In particular, confusion exists between the plaiss'Brick Wall' and‘Nat. Stone Wall;
‘Concrete Wall’and‘Rendered Wall'as well asTarmac’ and‘Paved’. This is attributed to the
similarity in colour profile within these classes, but notass. However, the consistency of the
classification results can be improved by combining congajyt related classes for which the
current combination of descriptive features does not aflemrobust classification. In particu-
lar, ‘Tarmac’ and‘Paved’ are combined into the classarmac/Paved’ ‘Brick Wall’ and‘Nat.
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Stone Wall'are combined into the clasBextured Wall’and, finally,'Concrete Wall’and‘Ren-
dered Wall'are combined into the clasSmooth Wall! In analogy to our analysis of results with
the original workspace classes, Tab. 7 and Fig. 14 showldétasults of this revised system.
Typical classification results are shown in Fig. 1.

Comparatively high precision and recall values can be aekskfor the combined classes.
Voted-SVM classification once again improves performaigaficantly. This is emphasised by
much stronger diagonal dominance of the correspondingisami matrices compared to Fig. 12.
In particular the recall-matrix indicates that most groundh data over all classes are now re-
trieved correctly. However, the precision matrix indicas$®@me considerable confusion remains.
A significant proportion of théDirt Path’ detections actually originate from thEarmac/Paved’
class. Likewise, a significant proportion of tHgush/Foliage’and ‘Vehicle’ detections actually
originate from' Tarmac/Pavedand/or Textured Wall: The reason for this can be foundin Tab. 7,
which indicates that data from each of the two clas$asmac/Pavedand‘Textured Wall'out-
numbers data from tHBirt Path’ , ‘Bush/Foliage’and‘Vehicle’ classes by an order of magnitude.
Therefore, a small percentage error in the classificaticthatd from the large classes results in
a relatively large drop in the precision of the small classeghis particular case, 779 out of
77256 ground-truthfarmac/Paveddata were classified agehicle’. Thus, 9.5 % of all vehicle
detections (8235 in total) actually originated from tilarmac/Paved’class (cf. left panel of
Fig. 14) whereas that figure only amounts to 1% of all grountht Tarmac/Paved'data hav-
ing been misclassified agehicle’ (cf. left panel of Fig. 14). It follows, of course, that a sinal
percentage reduction in misclassifications for a largesatagy have a significant impact on the
classification precision of smaller classes. This consitlem has currently not been included in
the choice of features detailed in Section 7.2, where thelangest classes were amongst the
main beneficiaries when more elaborate feature sets westderad.

Ground Truth

Classffication

Grass

Tarmac/Paved 0.8
Dirt Path 06

Textured Wall +
0.4

Smooth Wall
Bush/Foliage | 0.2

Vehicle

0

Fig. 14. Confusion matrices f@xford Science Parlata obtained using voted-SVM classification and mergessela
Left: Rows normalised such that the diagonal represergsision Right: Columns normalised such that the diagonal
representsecall.
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7.6. Overall System Runtime Performance

The scene classification engine as presented here has belemiemted to run online, inter-
facing to the Mission Oriented Operating Suite (MO®Sistalled on our mobile robdlarge.
Detailed estimates of timing for every stage of the procgspipeline are provided in Tab. 8.
The mean total processing time amounts to 4.8 s per framemiBx@num speed of the vehicle
is restricted by the need to gather high-quality 3D lasea ttata. 0.5 m/s. An image is recorded
every 1.5 m, leading to a real-time processing constrait®per frame. Although the system
currently runs (just) behind time, further computatioratings are expected from optimising
both the plane segmentation stage as well as the classificgtige. In particular, the latter could
be achieved by reducing the complexity of the SVMs used vithots such as outlined in [6],
where a reduction in complexity by a factor of ten is achiewétth no loss in generalisation
performance.

|Process ||Mean [stax [s]|

Plane Segmentati 2.00 | 2.80
Feature Extraction|| 0.09 | 0.15
Image Segmentatign 0.96 | 1.13
Classification 1.78 | 6.70

|overall | 483 | 10.78]

Table 8: Per-Frame Timing Information. Estimates wereiabthon a vanilla 2.0 GHz Pentium laptop as used in the
field.

8. Conclusions and Future Work

In this paper we give a detailed account of an appearanagisene-labelling engine in-
tended for the augmentation of common SLAM maps of outdobamenvironments. The sys-
tem runs online and close to real-time as per our requiresn@uir approach is based on a hier-
archy of binary classifiers labelling individual laser datxording to their origin. Laser points
are characterised by both 3D geometric data and visual duesed from monocular vision.
Spatial smoothing is performed automatically by consiptocally consistent (in appearance)
scene patches via image segmentation. We motivate oumtwtineice of features by trading
off speed against accuracy amongst several sets of profesene combinations. The gener-
alisation performance of the resulting classification sohés sufficient to consistently separate
different types of terrain and walls, including bushes asid§e. The system also has a capacity
to recognise common objects such as vehicles.

A natural extention of the current system is the enforcenoérscene-wide spatial as well
as temporal consistency of the obtained labels. This cacliesed via, for example, arkov
Random Fieldising any of a multitude of available inference methods.€atem is particularly
amenable to such an approach since the intuitive labellmgdjority vote of local scene patches
— rather than the raw laser data — enable the constructicalaifvely sparse graphs, thereby re-
ducing the computational cost of graph-construction aferémce. In addition to incorporating
prior knowledge by means of co-appearance of semanticdatvel expect the enforcement of
temporal consistency, e.g. by prediction and trackingutther improve our systems classifi-
cation performance. However, we have a clear vision of haws#mantic workspace descrip-
tions generated by our system will contribute to mobile todnatonomy and human-machine

6 http://www.robots.ox.ac.uk/pnewman/TheMOOS/
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interaction. Part of our on-going endeavour are (1) expionastrategies and planning based on
semantic knowledge, (2) the enhancement of our appeakzasad (natural visual landmarks)

navigation system, where landmark grouping accordingteesgic labels is expected to reduce
ambiguities, (3) and the development of human-machinefades that, for example, generate
semantic path descriptions and allow to address or chaisefgarticular places in the environ-

ment by means of semantic attributes.
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