
The Oxford Radar RobotCar Dataset:
A Radar Extension to the Oxford RobotCar Dataset

Dan Barnes, Matthew Gadd, Paul Murcutt, Paul Newman and Ingmar Posner

Abstract— In this paper we present The Oxford Radar Robot-
Car Dataset, a new dataset for researching scene understanding
using Millimetre-Wave FMCW scanning radar data. The target
application is autonomous vehicles where this modality is robust
to environmental conditions such as fog, rain, snow, or lens flare,
which typically challenge other sensor modalities such as vision
and LIDAR.

The data were gathered in January 2019 over thirty-two
traversals of a central Oxford route spanning a total of 280km
of urban driving. It encompasses a variety of weather, traffic,
and lighting conditions. This 4.7TB dataset consists of over
240,000 scans from a Navtech CTS350-X radar and 2.4
million scans from two Velodyne HDL-32E 3D LIDARs; along
with six cameras, two 2D LIDARs, and a GPS/INS receiver. In
addition we release ground truth optimised radar odometry to
provide an additional impetus to research in this domain. The
full dataset is available for download at:
ori.ox.ac.uk/datasets/radar-robotcar-dataset

I. INTRODUCTION

While many of the challenges in urban autonomy have
been met successfully with lasers and cameras, radar offers
the field of robotics an alternative modality for robust sens-
ing. The Frequency-Modulated Continuous-Wave (FMCW)
class of radar provides a 360◦-view of the scene and is
capable of detecting targets at ranges far exceeding those
of automotive 3D LIDAR. These advantages are particularly
valuable to autonomous vehicles which need to see further
if they are to travel safely at higher speeds or to operate
in wide open spaces where there is a dearth of distinct
features. Moreover, these vehicles must function reliably in
unstructured environments and require a sensor such as radar
that thrives in all conditions – rain, snow, dust, fog, or direct
sunlight.

This dataset builds upon the Oxford RobotCar Dataset [1],
one of the the largest available datasets for autonomous driv-
ing research. The original dataset release consisted of over
20TB of vehicle-mounted monocular and stereo imagery, 2D
and 3D LIDAR, as well as inertial and GPS data collected
over a year of driving in Oxford, UK. More than 100
traversals of a 10 km route were performed over this period
to capture scene variation over a range of timescales, from
the 24 h day/night illumination cycle to long-term seasonal
variations. As a valuable resource for self-driving research,
the vehicle software and mechatronics have been maintained
since the original dataset was gathered and released: now
configured with a millimetre-wave radar and two additional
3D LIDARs. The current appearance of the vehicle with
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Fig. 1. The Oxford Radar RobotCar Dataset for complex and robust
scene understanding with Millimetre-Wave FMCW scanning radar data. We
collected 32 traversals of a central Oxford route with the Oxford RobotCar
platform during the month of January, 2019. Despite weather conditions
such as rain, direct sunlight, and fog which are challenging for traditional
modalities such as vision (left), radar (right) holds the promise of consistent
sensor observations for mapping, localisation, and scene understanding.
Sample pairs are taken from different locations of the driven route.

these additional sensors can be seen in Figure 2. Along with
the raw sensor recordings from all sensors, we provide an
updated set of calibrations, ground truth trajectory for the
radar sensor as well as MATLAB and Python development
tools for utilising the data.

By sharing this large-scale radar dataset with researchers
we aim to accelerate research into this promising modality
for mobile robotics and autonomous vehicles of the future.

II. RELATED WORK

A number of LIDAR- and vision-based autonomous driv-
ing datasets, such as [2]–[8], are available to the com-
munity and were primarily collected in order to develop
competencies in these modalities. This dataset release is
meant to advocate the increased exploitation of FMCW
radar for vehicle autonomy. We therefore present radar data
alongside the camera and LIDAR data typically appearing
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these datasets with the goal of replicating and advancing
these competencies with this promising sensor modality.

Similar radar sensors have been used in a variety of
domains for mapping, navigation, and perception [9]–[11].
Some publications using similar, if not identical, FMCW
radar for state estimation prior to the release of this dataset
include [12]–[16]. To this end, Section VI discusses the
optimised ground truth radar odometry data released as part
of this dataset to help further research in this area.

The Navtech radar dataset presented in [17] is concurrent
to this release. Although significantly smaller in size than
our release, the comparable setups should provide a great
opportunity for cross-validating approaches between datasets
in different geographical locations. The Marulan datasets
presented in [18] also use FMCW radar, but only configured
to a maximum range of 40m. Additionally, while these
datasets are collected under variable conditions, they rep-
resent fairly static outdoor scenes that are not representative
of urban driving.

III. THE RADAR ROBOTCAR PLATFORM

The dataset was collected using the Oxford RobotCar
platform as in [1], an autonomous-capable Nissan LEAF,
illustrated with sensor layout in Figure 2. For this release,
the RobotCar was equipped with the following sensors which
were not in the original release:

• 1 x Navtech CTS350-X Millimetre-Wave FMCW radar,
4Hz, 400 measurements per rotation, 163m range,
4.38 cm range resolution, 1.8◦ beamwidth

• 2 x Velodyne HDL-32E 3D LIDAR, 360◦ HFoV,
41.3◦ VFoV, 32 planes, 20Hz, 100m range, 2 cm range
resolution

In addition to the original sensors as in [1]:
• 1 x Point Grey Bumblebee XB3 (BBX3-13S2C-

38) trinocular stereo camera, 1280×960×3, 16Hz,
1/3" Sony ICX445 CCD, global shutter, 3.8mm lens,
66◦ HFoV, 12/24 cm baseline

• 3 x Point Grey Grasshopper2 (GS2-FW-14S5C-C)
monocular camera, 1024×1024, 11.1Hz, 2/3" Sony
ICX285 CCD, global shutter, 2.67mm fisheye lens
(Sunex DSL315B-650-F2.3), 180◦ HFoV

• 2 x SICK LMS-151 2D LIDAR, 270◦ FoV, 50Hz, 50m
range, 0.5◦ resolution

• 1 x NovAtel SPAN-CPT ALIGN inertial and GPS
navigation system, 6 axis, 50Hz, GPS/GLONASS, dual
antenna

As the main focus of this release, the Navtech CTS350-X
radar was mounted at the centre of the vehicle aligned
to the vehicle axes. We used a pair of Velodyne HDL-
32E 3D LIDARs instead of the LD-MRS 3D LIDAR used
in [1] for drastically improved 3D scene understanding. In
addition to providing twice the range and intensity returns,
the Velodynes provide a full 360◦ HFoV with 41.3◦ VFoV
for full coverage around the vehicle.

Sensor drivers for both the Navtech CTS350-X and Velo-
dyne HDL-32E devices were developed internally to provide

Fig. 2. The Radar RobotCar platform (top) and sensor location diagram
(bottom) with the Navtech CTS350-X radar mounted in the centre. Coordi-
nate frames show the origin and direction of each sensor mounted on the
vehicle with the convention: x-forward (red), y-right (green), z-down (blue).
Measurements shown are approximate; the development tools include exact
SE(3) extrinsic calibrations for all sensors.

accurate synchronisation and timestamping with the other
sensors.. For further details on sensors from the original
release, compute specifications, and data logging procedures
please consult the original dataset paper [1].

IV. RADAR DATA

The Navtech CTS350-X is a FMCW scanning radar with-
out Doppler information, configured to return 3768 power
readings at a range resolution of 4.38 cm across 400 azimuths
at a frequency of 4Hz (corresponding to a maximum range of
163m and 0.9◦ azimuth resolution). Other configurations of
the Navtech CTS350-X are able to provide range in excess
of 650m or higher rotation frequencies. However, for this
dataset shorter range, high resolution data was deemed most



Fig. 3. Example sensor data from the Navtech CTS350-X radar. Raw radar power power returns in polar form (left) for a full sweep of 0 → 2π over a
range of 0 → 163m and the corresponding scan in Cartesian form (right), with the vehicle in the center and axes from -50m → 50m. Tools required to
parse the data and perform the polar-to-Cartesian conversion are provided in the SDK discussed in Section VII.

useful in urban scenarios where straight line distances over
163m are rare.

This type of radar rotates about its vertical axis while con-
tinuously transmitting and receiving frequency-modulated
radio waves similar to a spinning LIDAR. The frequency
shift between the transmitted and received waves is used
to compute the range of an object, and the received power
is a function of the object’s reflectivity, size, shape, and
orientation relative to the receiver. One full rotation and its
2D power data can be represented by a matrix in which
each row corresponds to an azimuth and each column to a
range, as shown in Figure 3, where the intensity represents
the highest power reflection within a range bin.

The radar operates at frequencies of 76GHz to 77GHz,
ensuring consistent measurements through harsh local con-
ditions such as dust, rain, and snow. The main beam spread
is 1.8◦ between −3 dB points horizontally and vertically;
with an additional cosec squared fill-in beam pattern up to
40◦ below the horizontal which permits detection of objects
beneath the main beam.

V. DATA COLLECTION

This dataset release follows the original Oxford RobotCar
Dataset route in Oxford, UK and consists of 32 traversals in
different traffic, weather, and lighting conditions in January
2019 totalling 280 km of urban driving. The vehicle was
driven manually throughout the period of data collection; no
autonomous capabilities were used. The total download size
of the dataset is 4.7TB. Figure 4 shows a random selection
of images taken from the dataset, illustrating the variety of
situations encountered. Table I lists summary statistics for the
raw data collected through the entire month-long collection
while Table II lists summary statistics for processed data
which are also made available for download.

Every effort was made to follow the exact route for
every traversal. However, this was not always possible and
slight diversions were made infrequently. Additionally, two
partial traversals are included which do not cover the entire
route. The GPS/INS data can be used to identify diversions.
However, similarly to [1], the accuracy of the fused INS

Sensor Type Count Size
Bumblebee XB3 Image 2,887,776 2.2 TB
Grasshopper 2 Image 2,963,601 1.6 TB

LMS-151 2D Scan 5,988,123 67.3 GB
SPAN-CPT GPS 3D Position 300,814 35.4 MB
SPAN-CPT INS 6DoF Position 3,008,085 491.7 MB

Navtech CTS350-X Radar Scan 240,088 106.1 GB
Velodyne Raw 3D Scan 2,405,785 91.0 GB

TABLE I
SUMMARY STATISTICS FOR COLLECTED DATA.

Sensor Type Count Size
Stereo Visual

Odometry (VO) 6DoF Position 961,487 89.0 MB

GT Radar Odometry 3DoF Position 240,024 28.6 MB
Velodyne Binary 3D Scan 2,405,785 774.3 GB

TABLE II
SUMMARY STATISTICS FOR PROCESSED DATA.

solution varied significantly during the course of data collec-
tion. Instead, we suggest using the optimised radar odometry
shown in Figure 6 and discussed in Section VI as the best
available solution of the underlying motion of the radar.

A. Sensor Calibration

We include in this release a full set of extrinsic calibration
data needed to utilise the additional Navtech and Velodyne
sensors while the intrinsics and extrinsics of the sensors from
[1] remain unchanged. Figure 2 illustrates the extrinsic con-
figuration of sensors on the Radar RobotCar platform. The
new LIDAR and radar sensors’ extrinsics were calibrated by
manually taking measurements of the as-built positions of the
sensors as a seed and then performing pose optimisation to
minimise the error between laser and radar co-observations.
Precise extrinsic calibrations for each sensor are included
in the development tools to be discussed in Section VII.
As per [1] the sensor extrinsics are not guaranteed to have
remained constant throughout the lifetime of the vehicle.
However, given the relatively short duration of this trial,
little degradation is expected. Given the large overlap in
observable environment and diversity of sensor modalities,



Fig. 4. Random pairs of Bumblebee XB3 images (left) with the temporally closest Navtech CTS350-X radar scan (right) from the Oxford Radar RobotCar
Dataset, showing the challenging diversity of weather, lighting, and traffic conditions encountered during the period of data collection in Oxford, UK in
January 2019.



Fig. 5. Directory layout for the Oxford Radar RobotCar Dataset. When
downloading multiple zip archives from multiple traversals, extracting them
all in the same directory will preserve the folder structure shown here.

this dataset provides an excellent test-bed for work on cross-
modality calibration and we encourage using our estimates
as initial seeds for further research.

B. Data Formats

Figure 5 shows the typical directory structure for a single
dataset. In contrast to [1] we do not chunk sensor data into
smaller files. Therefore each zip file download corresponds
to the complete sensor data for one dataset traversal (or
processed sensor output such as stereo VO) with the folder
structure inside the archive illustrated in Figure 5. The
formats for each data type are as follows:

1) Radar scans: are stored as lossless-compressed PNG
files in polar form with each row representing the sen-
sor reading at each azimuth and each column representing
the raw power return at a particular range. The files are
structured as <dataset>/radar/<timestamp>.png
where <timestamp> is the starting UNIX timestamp of
the capture, measured in microseconds. In the configuration
used there are 400 azimuths per sweep (rows) and 3768 range
bins (columns).

To give users all the raw data they could need we also
embed the following per azimuth metadata into the PNG
image within the first 11 columns as follows:

• UNIX timestamp as int64 in cols 1-8.
• Sweep counter as uint16 in cols 9-10; converted to

angle in radians with:

angle = sweep_counter / 2800 * π

• Finally, a valid flag as uint8 in col 11.
The valid flag is included as there are a very small number

of data packets carrying azimuth returns that are infrequently
dropped. To this end, in order to simplify usage for users,
we have interpolated adjacent returns so that each provided
radar scan has 400 azimuths (rows). If this is not desirable it

is advised to simply drop any row which has the valid flag
set to zero.

2) 3D Velodyne LIDAR scans: are provided in two for-
mats, a raw form which encapsulates all the raw data
recorded from the sensor for users to do with as they please,
or in binary form representing the non-motion compensated
pointcloud for a particular scan.

Raw scans: are released as lossless PNG
files with each column representing the sensor
reading at each azimuth. The files are structured
<dataset>/<laser>/<timestamp>.png, where
<laser> is velodyne_left or velodyne_right
and <timestamp> is the starting UNIX timestamp of the
capture, measured in microseconds. To give users all the
raw data they could need we embed per azimuth metadata
into the PNG within the following rows:

• Raw intensities for each laser as uint8 in rows 1-32.
• Raw ranges for each laser as uint16 in rows 33-96,

converted to metres with:

ranges (metres) = ranges_raw * 0.02

• Sweep counter as uint16 in rows 97-98; converted to
angle in radians with:

angle = sweep_counter / 18000 * π

• Finally, approximate UNIX timestamps as int64 in
rows 99-106

Timestamps are received for each data packet from the
Velodyne LIDAR which includes 12 sets of readings for all
32 lasers. We have linearly interpolated timestamps at each
azimuth reading. However, the original received timestamps
can be extracted by simply taking every twelfth timestamp.

Binary scans: are released as single-precision float-
ing point values packed into a binary file represent-
ing the non-motion compensated pointcloud generated
from the corresponding raw scan, similar to the Velo-
dyne scan format in [3]. The files are structured
as <dataset>/<laser>/<timestamp>.bin, where
<laser> is velodyne_left or velodyne_right and
<timestamp> is the starting UNIX timestamp of the
capture, measured in microseconds. Each scan consists of
(x, y, z, I) x N values, where x, y, z are the 3D Cartesian
coordinates of the LIDAR return relative to the sensor (in
metres), and I is the measured intensity value.

3) Ground Truth Radar Odometry: The files
<dataset>/gt/radar_odometry.csv contain
the SE(2) relative pose solution as detailed in Section VI,
consisting of the source and destination frame UNIX
timestamps (chosen to be in the middle of the corresponding
radar scans), the six-vector Euler parameterisation (x, y, z,
α, β, γ) of the SE(3) relative pose relating the two frames
(where z, α, β are all zero but included for compatibility
with other pose sources, most notably in the original
SDK) and the starting source and destination frame UNIX
timestamps of the corresponding radar scans which can be
used as the <timestamp> to load the corresponding radar
scan files.



Fig. 6. Optimised radar odometry plotted on OpenStreetMap [19] for
each of the 32 dataset traversals, where each run is offset for visualisation
purposes. The trajectories were generated by optimising robust VO [20],
visual loop closures [21], and GPS/INS as constraints. Map data copyrighted
OpenStreetMap contributors and available from openstreetmap.org.

VI. GROUND TRUTH RADAR ODOMETRY

Alongside this dataset we provide ground truth SE(2)
radar odometry temporally aligned to the radar data to help
further research using this modality for motion estimation,
map building, and localisation. The poses were generated by
performing a large-scale optimisation with Ceres Solver [22]
incorporating VO, visual loop closures, and GPS/INS con-
straints with the resulting trajectories shown in Figure 6.

Specifically, we include all 32 dataset traversals and
calculate robust VO using the approach proposed in [20],
in which each image is masked with a neural network
before generating odometry estimates using [23]. Visual loop
closures are then found within and across each traversal using
FAB-MAP [21]. For each traversal we optimise the VO,
GPS/INS, and individual loop closures in the radar frame
to obtain an approximately accurate global SE(2) pose
estimate. Finally, all 32 pose chains are jointly optimised
with all constraints before interpolating to create the ground
truth, time-synchronised radar odometry.

VII. DEVELOPMENT TOOLS

We provide a set of MATLAB and Python development
tools for easy access to and manipulation of the newly
provided data formats; where tools for sensors from the
original dataset, such as for imagery, remain unchanged. The
new tools include simple functions to load and display radar
and Velodyne scans as well as more complex functionality
such as converting the polar radar data into Cartesian form
and converting raw Velodyne data into a pointcloud. To
simplify usage these tools have been merged back into the
original Oxford RobotCar Dataset SDK1. We also provide,
and plan to extend, additional functionality useful to the
community such as a batch downloader script for this dataset

1github.com/ori-mrg/robotcar-dataset-sdk

and deep learning data loaders; for up to date information
on these please refer to the dataset website.

A. Radar Loading and Conversion to Cartesian

The MATLAB and Python functions LoadRadar.m and
load_radar read a raw radar scan from a specified
directory and at a specified timestamp, and return the per-
azimuth UNIX timestamps (µs), azimuth angles (rad), and
power returns (dB) as well as the range resolution (cm) as
described previously. For this data release radar resolution
will always equal 4.38 cm.

The functions RadarPolarToCartesian.m and
radar_polar_to_cartesian take the azimuth angles
(rad), power returns (dB) and radar range resolution (cm)
from a decoded radar scan and converts the polar scan into
Cartesian form according to a desired Cartesian resolution
(m) and Cartesian size (px).

The scripts PlayRadar.m and play_radar.py pro-
duce an animation of the available radar scans from a dataset
directory as well as performing polar-to-Cartesian conversion
as shown in Figure 3; please consult this script and the
individual functions for demo usage.

B. Velodyne Loading and Conversion to Pointcloud

Similarly, the MATLAB and Python functions
LoadVelodyneRaw.m and load_velodyne_raw
read a raw Velodyne scan from a specified directory and at a
specified timestamp, of the form <timestamp>.png, and
return ranges (m), intensities (uint8), azimuth angles (rad),
and approximate timestamps (µs) as described previously.

The functions VelodyneRawToPointcloud.m and
velodyne_raw_to_pointcloud take the ranges (m),
intensities (uint8), and azimuth angles (rad) from a decoded
raw Velodyne scan and produce a pointcloud in Cartesian
form including per-point intensity values.

The functions LoadVelodyneBinary.m and
load_velodyne_binary read a binary Velodyne
scan from a specified directory and at a specified timestamp,
of the form <timestamp>.bin, and returns a pointcloud
in Cartesian form including per-point intensity values.

Finally, the scripts PlayVelodyne.m and
play_velodyne.py produce an animation of the
available Velodyne scans from a dataset directory, as shown
in Figure 7; please consult this script and the individual
functions for demo usage.

VIII. SUMMARY AND FUTURE WORK

We have presented the The Oxford Radar RobotCar
Dataset, a new large-scale dataset focused on further ex-
ploitation of millimetre-wave FMCW scanning radar sensors
for large-scale and long-term vehicle autonomy and mobile
robotics. Although this modality has received relatively little
attention in this context, we anticipate that this release will
help foster discussion of its uses and encourage new and
interesting areas of research not previously possible.

In the future, we would like to continue to collect and
share large-scale radar datasets in new and challenging
conditions and more precisely fine-tune the current extrinsic

http://openstreetmap.org
http://github.com/ori-mrg/robotcar-dataset-sdk


Fig. 7. Example sensor data from the Velodyne HDL-32E 3D LIDAR. A raw Velodyne scan (left) stores intensities (top) and ranges (bottom) for
each azimuth (columns) whereas a binary scan stores the Cartesian pointcloud (right). Tools required to parse the data and perform the raw-to-pointcloud
conversion are provided in the SDK mentioned in Section VII. Here the raw scan (left) is shown with invalid pixels set to black and stretched colourmap
to improve visibility for the reader.

calibration parameters, perhaps by using publicly available
toolboxes designed for radar-LIDAR-camera systems such
as [24]. Finally, we would like to investigate semantic scene
understanding in radar, perhaps with additionally collecting
doppler data, to show that it is a viable alternative for
otherwise commonly used sensors like vision and LIDAR.
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