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Abstract—It is well known that bundle adjustment is the
optimal non-linear least-squares formulation of the simultane-
ous localization and mapping problem, in that its maximum
likelihood form matches the definition of the Cramer Rao
Lower Bound. Unfortunately, computing the ML solution is
often prohibitively expensive – this is especially true during loop
closures, which often necessitate adjusting all parameters in a
loop. In this paper we note that it is precisely the choice of a single
privileged coordinate frame that makes bundle adjustment costly,
and that this expense can be avoided by adopting a completely
relative approach. We derive a new relative bundle adjustment,
which instead of optimizing in a single Euclidean space, works
in a metric-space defined by a connected Riemannian manifold.
Using an adaptive optimization strategy, we show experimentally
that it is possible to solve for the full ML solution incrementally
in constant time – even at loop closure. Our system also operates
online in real-time using stereo data, with fast appearance-based
loop closure detection. We show results for sequences of 23k
frames over 1.08km that indicate the accuracy of the approach.

I. INTRODUCTION

Bundle adjustment is the optimal solution to the so-called

“full” simultaneous localization and mapping problem, in

that it solves for the maximum likelihood solution given all

measurements over all time. The goal in bundle adjustment

is to minimize error between observed and predicted image-

measurements of n 3D landmarks sensed from m 6D sensor

poses (or frames). Measurements and parameter estimates

are usually considered to be normally distributed, and the

problem is typically tackled with non-linear least-squares

optimization routines like Levenberg–Marquardt or the Gauss-

Newton method. The linearized system matrix that appears

in this process matches the form of the Fisher Information

matrix, which in turn defines the Cramer Rao Lower Bound

that is used to assess estimator consistency and optimality.

It is not surprising therefore that bundle adjustment is the

optimal non-linear least-squares simultaneous localization and

mapping algorithm.

The cost of optimizing the bundle adjustment objective-

function is cubic in complexity (in either m or n). For large

and growing problems, this can quickly become prohibitive.

This is especially true during loop-closure, when often all

parameters in the loop must be adjusted. In a single coordinate

frame, the farther the robot travels from the origin, the larger

position uncertainty becomes. Errors at loop closure can

therefore become arbitrarily large, which in turn makes it

impossible to compute the full maximum likelihood solution

in constant time (here the “full” solution is the one that finds

the optimal estimates for all parameters).

It is not clear that it is necessary to estimate everything

in a single coordinate frame – for instance most problems

of autonomous navigation, such as path planning, obstacle

avoidance or object manipulation, can be addressed within the

confines of a metric manifold. Taking this route, we structure

the problem as a graph of relative poses with landmarks

specified in relation to these poses. In 3D this graph defines

a connected Riemannian manifold with a distance metric

based on shortest paths. Notice that this is not a sub-mapping

approach, as there are no distinct overlapping estimates, and

there is only one objective function with a minimal parameter

vector; similarly, this is not a pose-graph relaxation approach,

as it solves for landmark structure as well.

Together with an adaptive optimization scheme that only

ever solves for a small sub-portion of the state vector, we

find evidence that the full maximum likelihood solution in the

manifold can be found using an incrementally constant time

algorithm. Crucially, this appears true even at loop closure. We

stress at the outset that the relative solution is not equivalent to

the normal Euclidean-space solution and it does not produce

an estimate that can be easily embedded in a single Euclidean

frame. Converting from the relative manifold into a single

Euclidean space is a difficult problem that we argue is best

handled by external resources that do not have constant run-

time requirements - e.g. by operator computers, not on the

robot.

In the next section we describe the related literature. In

Section III we derive the new relative objective function.

Results from simulation and initial results on real sequences

are presented in Section IV. We conclude with a discussion

of the pros and cons of the relative approach.

II. RELATED WORK

There has been much interest in Gaussian non-linear least-

squares solutions to SLAM based on “full-SLAM” or bundle

adjustment [29][31][8][12][19], though the problem is an old

one [3][22]. The full SLAM problem tries to optimize the joint

vehicle trajectory and map structure simultaneously given all

measurements ever made. There are approximate incremental

solutions that only optimize a small local subset of the map

[7], and there are methods that approximate the full solution

with various forms of marginalization [19][27], or by ignoring

small dependency information [30][21]. Recently some have

successfully employed techniques from the linear algebra and

numerical optimization communities to greatly reduce the

cost of finding the full solution [17]. Many use key-frames

to reduce complexity, though at the expense of accuracy
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(a) Notation. (b) Relative graph representation. Landmarks relative to "base-frames", each frame is
stored relative to it’s "parent".

Figure 1. (a) Notation for a simple trajectory: poses are indicated with triangles, landmarks with red stars. Landmark base-frames are indicated with solid
lines — e.g. here landmark k is stored relative to frame j. Each inter-pose edge in the graph includes an error-state transform defined about tj = 0 — that

is, Tα,j=T̂α,jT(tj), where T̂α,j is the current estimate of the relative transform between frame α and frame j. Notice that predicting the measurement zi,k

of landmark k in frame i will rely on all parameters in the kinematic chain from pj to pi. Figure (b) shows how landmarks are stored relative to the poses;
clearly there is no reference to a privileged global coordinate frame.

[10][23][18]. All these techniques suffer from computational

complexity issues during loop closures.

In the context of long-term autonomy, roboticists recognize

the need for online, real-time, navigation and mapping algo-

rithms. This means that localization and mapping algorithms

must operate incrementally within a constant-time budget.

Driven by this need, many authors have recognized the benefit

of relative representations [2][9][19][1][15][4][13][20]. The

most common solution is probably sub-mapping [2][25][6][9],

which breaks the estimation into many smaller mapping re-

gions, computes individual solutions for each region, and then

estimates the relationships between these sub-maps. Many

difficult issues arise in sub-mapping, including map overlap,

data duplication, map fusion and breaking, map alignment,

optimal sub-map size, and consistent global estimation in a

single Euclidean frame. The relative bundle adjustment we

propose can be seen as a continuous sub-mapping approach

that avoids these complications.

To solve large SLAM problems with many loops, the most

successful methods currently are the pose-graph optimization

algorithms. Instead of solving the full SLAM problem, these

methods optimize a set of relative pose constraints [24][14].

This is attractive because using forward substitution it is possi-

ble to transform full SLAM into a generally sparse set of pose

constraints [11][29], and even to make the resulting system of

equations relative [19]. Note that, given the assumed Gaussian

problem structure, this kind of forward substitution to a pose-

graph is algebraically equivalent to marginalization; methods

that marginalize landmark parameters onto pose parameters so

as to define a pose-graph are executing the forward substitution

phase of sparse bundle adjustment. In this light, pose-graph

relaxation, which solves for the optimal path estimate, can

be seen as one-half of one iteration of full SLAM, because

full SLAM also back-substitutes for the map parameters, and

iterates the procedure to convergence. Like other methods,

pose-graph solvers have worst-case complexity at loop closure

that is dependent on the length of the loop.

The work most similar to relative bundle adjustment is the

relative formulations given by Eade [9] and Konolige [19].

The former is akin to sub-mapping methods with constraints

to enforce global Euclidean consistency at loop closure; the

latter formulates the cost function relative to a single Eu-

clidean frame and then makes a series of approximations to

produce a sparse relative pose-graph. Neither method derives

the purely relative objective function (incrementally, both rely

on some form of single-reference frame), neither formulates

the objective function completely without privileged frames,

and both methods carry the burden of finding a globally

consistent estimate in a single Euclidean frame. Our approach

is substantially different because of the completely relative

underlying objective function that we derive.

Finally, a number of adaptive region approaches have been

explored within the privileged Euclidean frame paradigm

[28][26]. These techniques, together with all of the methods

presented in this section, are not constant time at loop closure,

and all but one [2] solve for a solution in a single Euclidean

space. We find that using adaptive region estimation in con-

junction with the relative formulation is the key that enables

constant time operation.

III. METHODS

Instead of optimizing an objective function parameterized

in a single privileged coordinate frame, we now derive a

completely relative formulation.

A. Problem Formulation

Bundle adjustment seeks to minimize error between the

observed and predicted measurements of n landmarks sensed

from m sensor poses (or frames). Likewise we minimize

the difference between predicted and measured values. Let

lj,k, k ∈ 1, ..., n, j∈ 1, ..., m be a set of n 3D landmarks

each parameterized relative to some base-frame j. Let tj ,

j ∈ 1, ...., m be a set of m 6D relative pose relationships

associated with edges in an undirected graph of frames. The

graph is built incrementally as the vehicle moves through the

environment, and extra edges are added during loop closure.

The graph defines a connected Riemannian manifold that is

by definition everywhere locally Euclidean, though globally it

is not embedded in a single Euclidean space. The relationship

between parent-frame α and child-frame j is defined by a

4 × 4 homogeneous transform matrix, Tα,j=T̂α,jT(tj), where

T̂α,j is the current estimate and T(tj) is the 4×4 homogeneous
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Figure 2. Graphical example for the sequence of 12 observations,
{z0,1, z1,1, z4,1}, {z0,2, z1,2, z2,2}, {z1,3, z2,3}, {z2,4}, {z1,5, z3,5, z4,5}.
There are five poses, p0,...,4, four edge estimates t1,..,4, and five landmarks

l0,1, l1,2, l1,3, l2,4 and l1,5. This example has the Jacobian H = ∂h
∂x

that
is depicted in Figure 3. Bold lines from poses indicate which frames are
base-frames.

matrix defined by tj . An example trajectory and graph with

this notation is shown in Figure I.

Each tj parameterizes an infinitesimal delta transform ap-

plied to the relationship from its parent frame in the graph (i.e.

an error-state formulation). The kinematic chain from frame

j to frame i is defined by a sequence of 4 × 4 homogeneous

transforms

Tji = T̂j,j+1T(tj+1)T̂j+1,j+2T(tj+2), ..., T̂i−1,iT(ti);

the sensor model for a single measurement is

hi,k(lj,k, ti, ...tj) = Proj
(

T−1
j,i lj,k

)

= Proj (gi,k(lj,k, tj+1, ...ti))

where gi,k : R
dim(x) → R

4, x 7→ T−1
j,i lj,k transforms

the homogeneous point lj,k from base-frame j to the ob-

servation frame i. This describes how landmark k, stored

relative to base-frame j, is transformed into sensor frame

i and then projected into the sensor. We make the usual

assumption that measurements zi,k are normally distributed:

zi,k ∼ N(hi,k, Ri,k). The cost function we associate with this

formulation is

J =

n
∑

k∈1

mk
∑

i∈1

(zi,k − hi,k(x))
T

R−1
i,k (zi,k − hi,k(x)) (1)

= ‖z − h(x)‖R−1 , (2)

which depends on the landmark estimate, lj,k and all the

transform estimates tj+1, ...ti on the kinematic chain from the

base-frame j to the measurement-frame i. This problem is

solved using iterative non-linear least-squares Gauss-Newton

minimization for the values of x that minimize re-projection

error — this yields the maximum likelihood estimate (subject

to local minima). Projecting via kinematic chains like this is

novel, but it changes the sparsity patterns in the system Jaco-

bian. Compared to normal bundle adjustment, this new pattern

increases the cost of solving the sparse normal equations for

updates δx to the state vector x — though as we will see, the

ultimate computational complexity is the same.
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Figure 3. Example relative bundle adjustment Jacobian structure for the
sequence of 12 observations in Figure 2. Grey indicates non-zero entries. The
horizontal stripes in the right hand Ht term above correspond to projections
that rely on transforming state estimates along kinematic chains from frame
j to frame i. These stripes are the only difference in sparsity pattern between
the relative formulation and traditional bundle adjustment.

B. Sparse Solution

The normal equations associated with the iterative non-

linear least squares Gauss-Newton solution to equation (1) are

HT R−1Hδx = HT R−1(z − h(x)). (3)

where H = ∂h
∂x

is the Jacobian of the sensor model, R is the

block diagonal covariance matrix describing the uncertainty of

the collective observation vector z (the stacked vector of all

measurements). Referring to the example in Figure 3 we see

that HT =
[

HT
l HT

t

]

and δx = [δl; δt], which exposes a well

known 2 × 2 block structure for equation (3),

[

V W

WT U

] [

δl

δt

]

=

[

rl

rt

]

,

where δl and δt are state updates for the map and edge

transforms that we are solving for; rl = HT
l R−1(z − h(x)),

rt = HT
t R−1(z − h(x)), V = HT

l R−1Hl, W = HT
l R−1Ht,

and U = HT
t R−1Ht. Building this linear system is the dom-

inant cost in solving each iteration, which makes it important

to compute the sparse Jacobian of h efficiently.

C. Relative Jacobians

Due to the functional dependence of the projection model

on the kinematic chain of relative poses, the Jacobians in

the relative formulation are very different from the Euclidean

counterpart. With reference to Figure 4, focus for a moment

on a single infinitesimal transform T(tc) that is somewhere
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.
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gi,k(x) = (Tj,cT(tc)Tc,i)
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Figure 4. This diagram shows the sensor following a path through pj

and pi while making measurements of landmark lj,k (indicated with dashed
lines). Landmark k is stored relative to frame j (indicated by a solid line).
To compute the projection of landmark k in frame i, we evaluate hi,k =

Proj(gi,k(x)), where gi,k(x) = T
−1
j,i lj,k =

`

Tj,cT(c)Tc,i

´

−1
lj,k , which

encapsulates projection along the kinematic chain between frame j and frame
i. To help understand how the relative formulation Jacobian is computed, this
diagram focuses on the the error-state transform T(tc) indicated in red. The
state-vector terms of interest when computing derivatives are 1) the transform
parameters tc, and 2) the landmark parameters lj,k .

along the kinematic chain from frame i to j. The individual

derivatives shown in Figure 3 are

∂hi,k

∂lj,k
=

∂k

∂gi,k

∂gi,k

∂lj,k
,

and

∂hi,k

∂tc
=

∂k

∂gi,k

∂gi,k

∂tc

where ∂k
∂gi,k

is the Jacobian of the perspective projection

function (using the standard K intrinsic camera calibration

matrix).

The Jacobian of gi,k with respect to the 3D point lj,k is

∂gi,k

∂lj,k
=

[

Ri,j

0

]

.

The Jacobian of gi,k with respect to tc has three cases that

depend on the direction of the transform T(tc) on the path

from frame i to j

∂gi,k

∂tc
=











Ti,c
∂T(tc)

∂tc
Tc,jlj,k if T(tc)points towards j

Ti,c
∂T(−tc)

∂tc
Tc,jlj,k if T(tc)points towards i

0 if i = j

and
∂T(tc)

∂tc
is the canonical generators of SE(3) (a 4× 4× 6

tensor). We now address the cost of solving each update.

D. Complexity of computing the relative sparse solution

Similar to sparse bundle adjustment, the following steps are

used to exploit the structure of H to compute the normal

equations and state-updates efficiently:

1) Build linear system, computing the terms U , V , W , rt,

and rl. Complexity is O(m3n) .

2) Forward substitute, computing A = U − WT V −1W ,

and b = rt − WT V −1rl. Complexity is O(m2n).
3) Solve reduced system of equations, Aδt = b for the

update δt. Complexity is O(m3).
4) Back substitute to solve for the map update, δl =

V −1(rl − Wδt). Complexity is O(mn).

The first step is completely different in the relative framework

so we describe it in more detail in algorithm 1. The overall

complexity is O(m3), which matches traditional sparse bundle

adjustment. Note that it is easy to convert algorithm 1 into a

robust m-estimator by replacing the weights, wi,k , with robust

weight kernels, wi,k = R−1
i,kW(ei,k) — for example we use

the Huber kernel [16]. Section IV gives results of applying

this sparse optimization routine to large simulated and real

sequences.

algorithm 1 Build linear system. Computes U , V , W , rt, and

rl in O(m3)

Clear U , V , W , rt, and rl

for all landmarks k do

for all frames i with a measurement of landmark k do

Compute
∂hi,k

∂lj,k

ei,k = zi,k − hi,k(x)
wi,k = R−1

i,k

Vk+ =
∂hi,k

∂lj,k

T
w−1

i,k

∂hi,k

∂lj,k

rlk+ =
∂hi,k

∂lj,k

T
w−1

i,k ei,k

for all p ∈ Path(i, j) do

Compute
∂hi,k

∂tp

rtP
+ =

∂hi,k

∂tp

T
wi,kei,k

Wk,p+ =
∂hi,k

∂lj,k

T
wi,k

∂hi,k

∂tp

for all q ∈ Path(p, j) do

Compute
∂hi,k

∂tq

Up,q+ =
∂hi,k

∂tp

T
wi,k

∂hi,k

∂tq

Uq,p+ =
∂hi,k

∂tq

T
wi,k

∂hi,k

∂tp

end for

end for

end for

end for

Finally, notice that if feature tracks are contiguous over

numerous frames (which they typically are), then the sparsity

pattern in W will be the same in the relative-formulation as it

is in the traditional one – hence the relative-formulation cost

of forward-substitution, solving the reduced system, and back-

substitution (steps 2-4) should be approximately equivalent.

E. Adaptive Updates

To reduce computation, it is important to optimize only

those parameters that might change in light of new information

[26][28]. Below we outline one approach to limit the param-

eters that are actively optimized.
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Figure 5. Average run-times for the main steps of relative bundle adjustment
on an Intel Core 2 Duo 2.8GHz processor. The average adaptive region from
the Monte Carlo simulation was 4.6 frames. Note that it is the cost of building
the linear system of equations that dominates the cubic complexity of solving
for the adaptive region of poses.
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(a) Pre loop-closure.
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(b) Post loop-closure.

Figure 6. Discovery of local active region. In (a), re-projection errors have
changed by more than ∆ǫ in the local frames p5, p6, and p7. In (b) a new
edge T6,7 is added during loop-closure, and the graph search leads to a larger
active region with frames p0, p1, p5, p6, and p7.

A breadth-first-search from the most recent frame is used to

discover local parameters that might require adjustment. Dur-

ing the search, all frames in which the average re-projection

error changes by more than a threshold, ∆ǫ, are added to an

active region that will be optimized. The search stops when

no frame being explored has a change in re-projection error

greater than ∆ǫ. Landmarks visible from active frames are

activated, and all non-active frames that have measurements

of these landmarks are added to a list of static frames,

which forms a slightly larger set we call the static region.

Measurements made from static frames are included in the

optimization, but the associated relative pose-error parameters

are not solved for. Example active regions are shown in Figure

6.

IV. RESULTS

The iterative nonlinear least-squares solution that exploits

the sparse relative structure and the four steps in section III-D

results in the run-time break-down shown in Figure 5. This

illustrates that building the sparse system of equations is the

dominant cost.

A. Simulation results

To determine the performance of the relative framework,

a batch of Monte Carlo simulations were run. The sequence

contains a realistic trajectory, landmark distribution, and a

1 pixel standard deviation Gaussian measurement noise (see

Figure 7).

Figure 7. Figure-of-eight sequence used in Monte Carlo simulation. This
sequence has 288 frames, 3,215 landmarks and 12,591 measurements with 1
pixel standard deviation Gaussian measurement noise added.
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Figure 8. Average Registration Error vs. Number of Frames being updated.
In the relative formulation, as the local region grows the average RMS error
drops quickly toward the same as when computed with all frames active. This
motivates the use of an adaptive region that allows parameters to vary only
if it has an effect on the cost function.

We compute errors in the following way: for each pose

in the trajectory, we register that pose to its ground truth

counterpart, and then localize the rest of the relative trajectory

in that frame. Note that “localizing” the relative trajectory is

done with a breadth-first-search that computes each frame’s

pose in the coordinate system of the root frame; this process

projects from the relative manifold into a single Euclidean

frame, and may cause “rips” to appear at distant loop closures.

Finally, the total trajectory registration error is computed as the

average Euclidean distance between ground truth and the lo-

calized frames. The average of all frames and all registrations

is the error plotted. Not surprisingly, initial results in Figure

8 indicate that error reduces towards the full solution (in the

relative space) as the local region increases in size.

The results here use an adaptive region threshold of

∆ǫ=0.05 pixels. With this threshold we find that the discovery

of new frames to include in the active region quickly drops

to between 4 and 5 poses, except at loop closure where it

jumps to accommodate the larger region of poses found by the

breadth-first-search. Figure 9 shows the adaptive region size

discovered for two different loop closures, one 50m long and

another 100m long. The point to note is that the discovered

adaptive region is independent of loop size, and that errors

do not propagate around the loop even though loop closure
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Loop Closure

(a) 50m loop with closure at frame 250.
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Loop Closure

(b) 100m loop with closure at frame 500.

Figure 9. This figure shows how the number of frames in the adaptive region fluctuates over time and during loop closure. During loop closure the size
of the adaptive region jumps to accommodate all the local frames that have been added to the active region, as well as any neighboring frames that will be
affected. Notice that errors do not propagate all the way around the loop, and only a fraction of the state vector needs to be updated. Loop closure at 250 and
500 frames induces updates in approximately the same number of parameters, which strongly indicates that optimization at loop closure will remain constant
time, independent of loop size. Before loop closure, the average metric position error is over 75cm for the 500 frame loop. Using the same adaptive region
criteria, Euclidean bundle adjustment would require adjusting all parameters in the loop - whereas the adaptive relative approach only adjusts 20 poses.

error is ~75cm on average for the 500 frame sequence. Using

the same adaptive region criteria, Euclidean bundle adjustment

would require adjusting all parameters in the loop - whereas

the adaptive relative approach adjusts just 20 poses.

Our adaptive strategy for discovering the active region is

designed to have a rippling effect: when parameter estimates

change, it effects the re-projection error in nearby frames,

which, if greater than ∆ǫ, will add those parameters to the

active region, potentially causing them to change... etc. A

key result of the relative formulation is that these errors

stop propagating and balance out with distance from the new

information - that is, the network of parameters is critically

damped.

B. Real Data

The system operates online at 20-40Hz, this includes all im-

age processing, feature tracking, robust initialization routines,

and calls to FABMAP[5] to detect loop closures. We have

run it successfully on sequences with up to 110K frames over

tens of kilometers. Figure 10 shows a 1.08 kilometer trajectory

computed from 23K frames. Table I gives an indication of

typical system performance.

V. DISCUSSION

The privileged-frame approach and the relative formulations

are very different; their objective functions are different and

they solve for different quantities. The former embeds the

trajectory in a single Euclidean space; the latter in a connected

Riemannian manifold. At first reading it may appear that the

lack of a simple Euclidean distance metric between two points,

and the fact that we cannot render the solution very easily, is a

disadvantage of the relative formulation. Note however that the

manifold is a metric space, and distance between two points

can be computed from shortest paths in the graph. With this

in mind, the relative representation should still be amenable to

Science Park

Avg. Min. Max.

Distance Traveled (km) — — 1.08

Frames Processed — — 23,268

Velocity (m/s) 0.93 0.0 1.47

Angular Velocity (deg/s) 9.49 0.0 75.22

Frames Per Second 22.2 10.6 31.4

Features per Frame 93 44 143

Feature Track Length 13.42 2 701

Re-projection Error 0.17 2.74×1e-3 0.55

Table I
TYPICAL PERFORMANCE OF OUR ONLINE SYSTEM FOR THE BEGBROKE

SCIENCE PARK DATA SET PROCESSED ON AN INTEL CORE 2 DUO 2.8GHZ.

Figure 10. 1.08km path over 23K frames estimated for the Begbroke Science
Park sequence. Table I shows typical performance results.

planning algorithms which are commonly defined over graphs

in the first place. Furthermore, because the manifold is (by

definition) locally Euclidean, algorithms that require precise

local metric estimates, such as obstacle avoidance or object

manipulation, can operate without impediment.
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Figure 11. This figure shows a globally consistent relaxed view of the Beg-
broke Science Park sequence. To view relative estimates in a consistent fashion
(single global frame) we have to transform from the relative representation
to a single Euclidean coordinate system. The sequence here has 23K poses
over 1.08 kilometers which makes the conversion computationally expensive.
This relative-to-global transformation process is designed to run on the user
interface, not on the robot.

We posit that a topometric relative formulation is suffi-

cient for many mobile robot navigation tasks, and that a

single global Euclidean representation is rarely necessary.

Certainly the benefits afforded by incrementally constant-time

performance are tremendous, and in the light of that, some

inconvenience may be acceptable. If a unified global Euclidean

picture is deemed essential by a particular external application

or technique, our choice would be to push responsibility for

generating the single Euclidean embedding into that process

- for example undertaking fast approximate pose-graph relax-

ation in order to render consistent results in a user interface

[24], [14].

A. Rendering in a single Euclidean space

As an example, Figure 11 shows the result of transforming

a large relative state estimate into a single Euclidean frame

using pose-graph relaxation. Note that even this state-of-the art

global Euclidean estimate fails to discover the true rectilinear

structure. Arguably the best way to improve the map would

be to schedule new measurements across the diagonal of the

map, thereby considerably constraining the solution. While

this interventionist approach is used extensively in surveying,

we are not comfortable with placing such a requirement on a

mobile platform — ideally navigation and mapping should be

a quiet background task producing estimates for consumption

by any interested client process. With this example in mind,

perhaps accurate global Euclidean state estimates are the

wrong goal to aim for — what matters is relative metric

accuracy and topological consistency — all of which can be

attained with a relative manifold approach.

VI. CONCLUSION

The fact that the variables in bundle adjustment are defined

relative to a single coordinate frame has a large impact on the

algorithm’s iterative convergence rate. This is especially true

at loop closure, when large errors must propagate around the

entire loop to correct for global errors that have accumulated

along the path. As an alternative, we have presented an adap-

tive relative formulation that can be viewed as a continuous

sub-mapping approach – in many ways our relative treatment

is an intuitive simplification of previous sub-mapping methods.

Furthermore by solving all parameters within an adaptive

region, the proposed method attempts to match the full max-

imum likelihood solution within the metric space defined by

the manifold. In stark contrast to traditional bundle adjustment,

our evaluations and results indicate that state updates in the

relative approach are constant time, and crucially, remain so

even during loop closure events.
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