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Abstract— This paper explores the idea of reducing a robot’s
energy consumption while following a trajectory by turning
off the main localisation subsystem and switching to a lower-
powered, less accurate odometry source at appropriate times.
This applies to scenarios where the robot is permitted to
deviate from the original trajectory, which allows for energy
savings. Sensor scheduling is formulated as a probabilistic
belief planning problem. Two algorithms are presented which
generate feasible perception schedules: the first is based upon
a simple heuristic; the second leverages dynamic programming
to obtain optimal plans. Both simulations and real-world
experiments on a planetary rover prototype demonstrate over
50% savings in perception-related energy, which translates into
a 12% reduction in total energy consumption.

I. INTRODUCTION
Robots require energy to operate. Yet they only have

access to limited energy storage during missions. As we
extend the reach of autonomous systems to operate in remote
locations, over long distances and for long periods of time,
energy considerations are becoming increasingly important.
To date, these considerations are often brought to bear in
schemes where trajectories or speed profiles are optimised to
minimise the energy required for actuation (see, for example,
[1], [2], [3]). Here we take a different, yet complementary,
approach in considering the energy expenditure for sensing
(and, implicitly, computation) associated with navigation. In
particular, our goal is to activate the perception system only
as required to maintain the vehicle within a given margin
around a predetermined path. As the main navigation sensors
are switched off and the robot reverts to a lower-powered,
less accurate odometry source for parts of the trajectory,
any associated computation will also be reduced, leading to
further savings in energy.

Naively, such perception schedules could be constructed
by switching sensors on and off randomly or according to,
for example, a fixed frequency. This does, however, suffer
the drawback that no heed is paid to drift in the robot’s
position with respect to the original trajectory: it may not
be desirable to deviate by more than an allowed margin
from the predetermined route. This arises, for example, in
a planetary exploration scenario when conducting long tra-
verses over featureless terrain. Other possible considerations
include traversability, obstacles, and the robustness of the
localisation system to deviations from the original path. Such
naive approaches would also need to be tuned to individual
trajectories as savings would depend significantly on trajec-
tory shape. In this work we present two approaches which
explicitly account for drift and trajectory shape (though the
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Fig. 1. Example of an energy-optimal perception plan as generated by our
method in a path-following scenario. The robot needs to run the sensor only
in selected parts of the trajectory (red and yellow) which guarantees it stays
within the specified corridor (green) with 90% confidence. This plan saves
50% of the energy consumed by the localisation system, which is 12% of
the total system consumption.

full trajectory need not be available a-priori) as well as the
time required to power-cycle the perception system in order
to compute perception schedules (see Figure 1 for a typi-
cal schedule computed). Both methods are probabilistically
bounded to limit path deviations to a user-specified value. To
the best of our knowledge this is the first work to investigate
sensor scheduling in the context of robot navigation as a
means to save energy during operation. Specifically, beyond
exploiting localisation accuracy for energy management, the
contributions of this work are

• the framing of the problem as a belief Markov decision
process over robot poses;

• the description of a greedy algorithm which employs a
simple heuristic that ensures feasibility of the perception
schedules;

• the description of a belief planning algorithm which
leverages dynamic programming to provide optimal
perception schedules.

Our work is particularly aimed at scenarios where the
energy budget for sensing and computing is commensurate
with that of actuation - such as is typically the case for
planetary rover missions. Our discussion is therefore framed
in this context. Our experimental evaluation is carried out on
a commercially available planetary rover system. We demon-
strate that scheduling the perception subsystem allows for
substantial savings in energy expenditure during a mission.



II. RELATED WORKS
Energy consumption in mobile robotics has come to the

attention of a number of researchers in recent years. The
bulk of this prior art addresses the energetic cost of robot
locomotion. A number of works in this vein consider path
length, trajectory shape as well as the properties of different
type of terrain to predict expected energy use (e.g. [4], [3],
[5], [6]). Notably, in a simulation study, the authors of [7]
do so in the context of planetary rovers. Mei et al. [1], [8]
analyse the impact of different velocities, providing a control
algorithm aimed at maximising the distance travelled. Motor
dynamics and control input are considered in [9].

To the best of our knowledge, the idea of scheduling a
robot’s perception system for navigation remains, in practical
terms, largely unexplored. The notion that motor energy
– next to sensing and computation – may only account
for a fraction of the energy requirements of a platform is
demonstrated in [10]. This study also notes that the energy
consumption of the sensors is a function of the frequency
with which they are deployed. Brateman et al. [11] build on
these findings and note that energy can be saved by regu-
lating the clock speed of the processor used for perception
computation. Based on this insight, in a simulation study,
they develop an algorithm which trades off vehicle velocity
against processor clock speed.

Our work is closely related in spirit to both [10] and [11].
In contrast to these works, however, we explicitly develop
trajectory-dependent activity schedules for the perception
subsystem. Our methods are evaluated using real-world ex-
periments. In order to provide optimal schedules we frame
this problem as a belief space planning task, which has a
successful track record in mobile robotics in dealing with
uncertainty in robot state (e.g. [12], [13], [14]).

III. PERCEPTION SCHEDULING AS BELIEF MDP
In this section we define and formalise the problem

of perception scheduling in the context of belief Markov
decision processes [15]. Specifically we describe the problem
as a set of belief states B(xt), a set of actions at, a transition
function T (B(xt), at) and a cost function E(at).

Consider a situation where the robot has to follow a
particular trajectory ϕ specified as a sequence of poses such
that

ϕ = {x̃t|t = t1, t2, ..., tN}. (1)

The total energy E required to traverse the trajectory can be
split into the energy required to run the navigation system
(sensors and respective processing), EP , and the energy
consumed by rest of the system (without loss of generality
we attribute this mainly to the motors), EM ,

E = EP + EM . (2)

Our goal is to minimise the total energy E by minimising
EP while maintaining EM constant. This is achieved by
enabling/disabling the localisation system according to a
perception schedule, ς , specified by a sequence of actions,
at such that

ς = {at|t = t1, t2, ..., tN} (3)
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Fig. 2. Energy EP (ς) required for localisation along the trajectory as given
by the perception schedule ς . We assume localisation needs time Tstart and
energy Estart to boot and then has a constant power demand Pon while
it is operational.

where t denotes the time at which an action is taken.
These actions correspond to decisions the robot can make
with respect to its navigation system. When the localisation
system is enabled the robot has a choice to keep it turned on,
aon, incurring an energy cost Pon ·∆t where Pon is power
demand of localisaiton when active, or to turn it off at zero
cost. Similarly, when localisation is disabled the robot can
keep it turned off, aoff , at no cost or boot the localisation
system at a cost Estart· ∆t

Tstart
equivalent to an average energy

demand over time Tstart required to turn localisation on. We
model EP simply as a sum of energy demands for individual
actions (Figure 2)

EP (ς) =

N∑
t=1

E(at). (4)

Once localisation is turned on the robot continuously deter-
mines its pose and follows the trajectory. When localisation is
off, the robot tries to blindly follow the shape of the trajectory
using dead reckoning. In this case, the robot will deviate from
the intended trajectory as a result of odometry drift. When
localisation is re-enabled the robot observes its position
and manoeuvres back towards the path. As discussed in
Section V, minor path deviations do not cause an increase in
motor energy consumption or hamper the ability to localise.
We thus consider the optimisation of E to require only the
minimisation of EP while EM is independent of the ς .
Morever, to limit the magnitude of potential path deviations
we consider a set of schedules, F, to be feasible only if
they result in trajectories contained (with a probabilistic
guarantee) within a safe corridor At.

Therefore, the task of perception scheduling is to find
an optimal, feasible plan ς∗ which minimises the energy
consumption attributed to the localisation system:

ς∗ = arg min
ς∈F

EP (ς). (5)

A. Schedule feasibility

We consider a set of feasible schedules F, such that

F = F1 ∩ F2, (6)
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Fig. 3. Belief evolution over the robot’s pose xt around the trajectory ϕ
based on the perception schedule, ς . When localisation is turned on, the
position is known and the belief B(xt) is given by a Dirac delta function,
δ(xt− x̃t). When localisation is turned off, the belief evolves based on the
robot’s motion model. The perception schedule is conceived such that the
robot always remains in the designated safe corridor area, At.

where F1 and F2 separately satisfy different feasibility
constraints. First we consider that localisation can not be
turned on instantaneously but requires time Tstart to initialise
(turning on the sensor, launching an executable, etc). This
means a sufficient number of astart actions need to precede
the first action aon:

F1 =

{
ς

∣∣∣∣ at+1 = aon ∧ at 6= aon → at−t′ = astart

∀t, t′ : 0 ≤ t′ ≤ Tstart

}
(7)

Secondly, we want the robot to remain within a safe corridor
of the planned trajectory even when localisation is turned off.
In this case the real pose xt is not known. Instead we can
compute a belief state B(xt), which is a distribution over the
possible robot poses in relation to our target, x̃t:

B(xt) = p(xt|x̃1:t, a1:t). (8)

This belief evolves based on the actions taken and can be
encoded in the form of a transition function T . When the
localisation is turned on we approximate this belief by a
Dirac delta function centred on the intended pose. This
reflects an assumption that localisation is exact. As the
camera is turned off, the belief over poses evolves based
on the command input ut used to drive the robot from pose
x̃t to x̃t+1 along the trajectory as well as on the odometry
noise model (Figure 3.)

T (B(xt), at) =

{
δ(xt − x̃t) if at = aon

p(xt|B(xt−1), ut) otherwise.
(9)

As illustrated in Figure 4, every perception schedule
{a1, a2, ..., aN} corresponds to a sequence of belief states
{B(x1),B(x2), ...,B(xN )}. We define the safe obstacle-free
area around the robot’s intended pose x̃t at time t as At. The
desired behaviour is that the robot will not exit this zone. Due
to the randomness of the motion process when localisation is
turned off, the risk of the robot leaving this corridor can not
be completely avoided. Instead, we leverage a probabilistic
guarantee that the true robot pose is contained within this
area with probability greater than or equal to pconf . We are

therefore interested in the set of solutions satisfying, at all
times

F2 =

{
ς

∣∣∣∣ ∫
At

B(xt)dxt ≥ pconf ∀t
}
. (10)

IV. SOLUTION METHOD
In this section, we describe the two algorithms used for

computing feasible perception schedules. The first one, the
greedy algorithm, is simple to implement: it does not require
knowledge of the full trajectory in advance and, in practice,
can save a substantial amount of perception-related energy.
However, this algorithm may produce suboptimal behaviour
in some situations as a result of taking decisions which
are only locally optimal. The second algorithm overcomes
this limitation by considering the entire trajectory (or up to
a given planning horizon) and presents an efficient belief
planning implementation based on dynamic programming
[16]. This algorithm is able to find the optimal trajectory
through the belief space attainable by the robot which, in
turn, correspond to the optimal perception schedule, ς∗ (see
Fig. 4).

A. Greedy Algorithm
A simple procedure to obtain a valid plan is to keep the

sensor off as long as possible while simultaneously mod-
elling the robot’s belief state B(xt). When the uncertainty
on the state becomes too high, i.e.

∫
At
B(xt)dxt < pconf ,

we turn the sensor on, localise and turn the sensor off again.
The only constraint is related to the boot time of the sensor,
Tstart. This means that we need to simulate the evolution
of the belief state in advance for a time horizon Tstart in
order to be able to start the sensor in time. It also means
that we always need to know the trajectory shape only for

time
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Fig. 4. The belief space attainable by the robot starting at time t and a
possible perception schedule indicated by the actions performed (coloured
arrows). At every time step the robot has a choice to either localise or not.
The latter results in more uncertainty over its current pose. Localisation has
an energy cost associated with it but remains the only mechanism by which
pose uncertainty can be limited.



Algorithm 1 Greedy Control Strategy
Input: B(x1) current belief state - see Equ. 9.

Tstart time required to localise
x̃1:Tstart

trajectory for Tstart seconds
A1:Tstart safe corridor for Tstart seconds
pconf confidence of staying in the corridor

Output: a1 perception action taken
Forward simulate belief state evolution.

1. for t = 2, 3, ..., Tstart
2. B(xt) = p(xt,B(xt−1), ut)
3. if

∫
At
B(xt)dxt < pconf then

4. return a1 ←

{
aon if B(x1) = δ(x1 − x̃1)

astart otherwise
5. return a1 ← aoff

the next Tstart seconds. The principle can be efficiently
implemented as an online perception controller as shown in
Algorithm 1. In such cases, the perception schedule ς is not
created explicitly but is generated on-the-fly as a result of the
controller’s decisions. This simple procedure is surprisingly
effective. As described in section V, it can save over 40%
of the perception-related energy consumption on the robotic
platform used in this work.

However, if more complex trajectories are followed, this
behaviour can be suboptimal. Consider the scenario shown
in Fig. 5 a). When performing a motion resulting in high
pose uncertainty (e.g. turning), keeping the sensor on until
the motion is finished results in higher energy savings since it
prevents the later need for relocalisation. Similarly, in Fig. 5
b), if the energy to localise (Estart) is low but the interval
Tstart is long, it would be optimal to localise early, at t1,
and then turn the sensor off. Waiting until t2 is suboptimal
and requires more energy, since the interval t3− t2 is shorter
than the time required to boot the system (Tstart) and the
sensor would need to be kept on.

Greedy approach Optimal plan

Point of �rst

localisation

Need for another

localisation

Extended localisation prevents

need for subsequent localisation

a)

b)
t 3

t 2 t 1

t 3

Need for another

localisation

Early localisation allows

turning the sensor o!

Fig. 5. Example scenarios when a locally optimal decision results in a
globally suboptimal solution. A detailed description is provided in the text.

B. A Belief Planning Solution
Given knowledge of the robot’s initial position as well

as of the entire trajectory, the optimal perception sched-
ule can be computed as the energetically cheapest path
to any belief state, B(xN ), through all attainable belief
states, B(x1),B(x2), ...,B(xN ). It is important to observe
that even though there are infinitely many possible belief
states, our robot can visit at most N(N+1)

2 different ones.
These states are produced by turning off the sensor at time
t, and continuing blind for the remainder of the trajectsory.
This bound is important because it indicates that all possible
belief states can be precomputed which in turn allows the
deployment of deterministic planning algorithms commonly
used for finite Markov decision processes [17]. This re-
sults in the optimal schedule ς∗(B(xt)) yielding minimal
energy usage, E∗(B(xt)) for any starting state, B(xt). The
optimal schedule for the whole trajectory, ς∗, is equal to
ς∗(δ(x1 − x̃1)).

However, computing all possible belief states in advance
is inefficient. Instead we employ a dynamic programming
approach to compute optimal plans at each timestep, ς∗t =
ς∗(δ(xt−x̃t)), as well as the associated energy consumption,
E∗t = E∗(δ(xt − x̃t)), only for belief states δ(xt − x̃t) in
order of t = N,N − 1, ..., 1. This results in an efficient
solution as detailed in Algorithm 2. Reachable belief states
are computed only when required and previously determined
optimal values are reused. The algorithm has time complexity
O(N2 · T (B)) and memory complexity O(N + M(B)),
where T (B) is the time and M(B) is memory complexity
corresponding to the belief state evolution (check lines 2-3
of Algorithm 1 and 7-8 of Algorithm 2). Our implementation
uses a particle filter to represent the belief states, which
results in time complexity O(N2L) and memory complexity
O(N + L), where L is the number of particles.

V. EXPERIMENTS
We evaluate the performance of the algorithms presented

using a commercially available planetary rover prototype in
a path-following task with a total driving distance of 1.8km.
We demonstrate that the methods described are able to save
over 50% of the sensing-related energy, which constitutes
approximately 12% of the overall energy usage of the rover.

A. System
The robotic platform used in these experiments is the

ARC Q14 planetary rover shown in Figure 6. It is de-
signed to mimic the configuration and specifications found
on rovers deployed for planetary exploration. In particular,
robot locomotion is provided by eight low-power motors,
independently articulating steering and four rotating wheels,
traveling at a maximum speed of 0.5m/s. The robot is
equipped with a Point Grey Bumblebee XB3 camera for
visual localisation and wheel odometry sensors aiding motor
controllers. The computation is carried out on an on-board
MicroSVR computer containing an Intel Core i7 processor
and 16GB RAM. The robot is equipped with current sensors,
which allow the measurement of the power consumption of
individual motors. This was found to be of the order of



Algorithm 2 Optimal plan computation.
Input: x̃t1:tK trajectory

At1:tK safe corridor
Pon power demand of perception
Tstart time required to localise
Estart energy required to localise
pconf confidence of not leaving the corridor

Output: ς∗ perception plan
Backward pass - compute E∗t and ς∗t for each t

1. for t = N − 1, N − 2, ..., 1

Value of keeping the sensor on
2. E∗t ← ∆t · Pon + E∗t+1

3. ς∗t ← {aon, ς∗t+1}
Turn the sensor off and turn it on at time t′

4. ς ← {}
5. B(xt)← δ(xt − x̃t)
6. for t′ = t+ 1, t+ 2, ..., N do

Simulate belief state
7. B(xt′)← p(xt′ ,B(xt′−1), ut′)

8. if
∫
At′
B(xt′)dxi < pconf then

9. break
10. if t′ < t+ Tstart then
11. ς ← {astart, ς}
12. else

Vale of turning the sensor on at time t′

13. if Estart + E∗t′ < E∗t then
14. E∗t ← Estart + E∗t′
15. ς∗t ← {ς, aon, ς∗t′}
16. ς ← {aoff , ς}
17. return ς∗ = ς∗1

30W . Nominal values specified by the manufacturers are
used for the CPU (25W ) and the camera (5W ). This amounts
to an average overall power consumption of 60W while
moving and localising. We estimate energy savings when the
localisation system is turned off to be of the order of 10W .
This comprises 5W (the nominal value) for the camera as
well as an additional 5W estimated reduction in CPU power.

The navigation system is based on visual teach and repeat
(T&R) [18], [19], which is often employed in the space
domain and similar approach can used for example in sample
and return missions [20], [21]. T&R enables a mobile robot
to autonomously follow a previously driven path with high
accuracy. First, a trajectory ϕ is driven by a human operator.
During this teach run the system builds a feature map used
later for localisation. Next, the perception schedule ς is
computed using the presented algorithms. Finally, the robot
attempts to follow the path autonomously, localising in the
map according to the perception schedule. The entire system
architecture is illustrated in Figure 7. In order to evaluate
the robot’s actual trajectory when adhering to perception
schedules the camera was not switched off in reality. Sensor
deactivation was instead simulated by cutting off the image
stream in software and subtracting the appropriate energy

Fig. 6. The robotic platform used for experiments. The robot is a
commercially-available version of a planetary rover. It is equipped with
low-power motors, a stereo camera pair for visual localisation and a CPU
to carry out the computation.

values from the total for the entire system to obtain the
reduced energy demand. Note that, although we tested the
behaviour and the performance of our methods in a T&R
context, this is not the only scenario in which it is possible
to use these methods. The utility of perception schedules
during path following is general and does not depend on the
source of the trajectory.

B. Perception schedule computation

To generate the perception schedules we considered lo-
calisation to be reliable if the distance from the robot’s real
pose, xt, to the expected one, x̃t, is less than γ = 0.9m and
if the angular error is less than 20◦. This defines the scope of
the safe area, At. Similarly, we assumed that the robot can
reliably localise after time Tstart = 4s and that the energy
consumption required to start up the localisation system is
Estart = Tstart · Pon = 0.0111Wh.

We used a standard odometry motion model [15] to
approximate the robot’s drift when the localisation system is
not active. In this model, let (∆x,∆y,∆θ)t be the command
input fed to the controller required to move the robot from
state x̃t to x̃t+1. The robot’s motion during this interval is
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Fig. 7. System diagram enabling perception scheduling. The localisation
system feeds pose information into a standard trajectory-control pipeline.
The perception controller turns the sensor on or off based on the pre-
computed perception schedule.



approximated as a composition of an initial rotation, φ1,
an intermediate translation, τ , and a second rotation φ2, as
shown in Figure 8. These motions are described by

φ1 = atan2(∆y,∆x), (11a)

τ =
√

∆x2 + ∆y2, (11b)
φ2 = ∆θ − φ1. (11c)

We assume that the real motion is affected by additive zero-
mean Gaussian noise with standard deviation proportional to
the motion magnitude:

φ̃1 ∼ N (φ1, α1|φ1|+ α2τ), (12a)
τ̃ ∼ N (τ, α3τ + α4(|φ1|+ |φ2|)), (12b)

φ̃2 ∼ N (φ2, α1|φ2|+ α2τ). (12c)

where the tuning parameters α = (α1, α2, α3, α4) govern
the influence of each of the motion components. Using these
definitions, the real robot motion is given by

∆x̃ = τ̃ cos(φ̃1), (13a)

∆ỹ = τ̃ sin(φ̃1), (13b)

∆θ̃ = φ̃1 + φ̃2. (13c)

In our experiments, we obtained the parameter vector α, by
maximising the log likelihood of the robot motion, as re-
ported by the visual localisation system, given the commands
used to control the robot on a calibration trajectory of length
85m. The resulting values are given in Table I.

In the implementation of the perception scheduling al-
gorithms, we made use of the particle filter described in
[15], with L = 10000 particles, to represent the belief state.
The propagation of the belief and the computation of the
probability of the robot being in the safe area At (lines 2,3
of Algorithm 1 and 7, 8 of Algorithm 2) is then obtained
by sampling the described motion model and computing
the number of particles in At. For a typical trajectory of
length N = 500 timesteps, the generation of the perception
schedule is typically obtained within 0.1s in the case of the
Greedy algorithm and within 5s in the case of the Belief
planning algorithm.

ϕ1

τ

ϕ2

Fig. 8. The plant model used to describe rover motion [15]. The robot
motion (green) in a time interval is approximated by a rotation, φ1, followed
by a translation, τ , and a second rotation, φ2. The rotations and the
translation are affected by noise.

α Odometry noise model [0.428, 0.100, 0.054, 0.150]
Pon Localisation power demand 10W
Tstart Localisation boot time 4 s
Estart Localisation boot energy 0.0111 Wh
pconf Confidence threshold 90 %
γ Corridor width 0.9 m

TABLE I
PARAMETERS USED TO GENERATE THE PERCEPTION SCHEDULES IN THE

EXPERIMENTS.

C. Evaluation

We evaluate the performance of the algorithms on three
different trajectories of length 61m, 54m and 53m, as
depicted in Figure 9. These trajectories were chosen to
consider different terrain conditions. The first trajectory was
driven on asphalt in an urban area, the second on gravel paths
and the third on grass.

To establish a baseline for the energy consumption, the
robot followed all trajectories K times with the localisation
system active for the entire traverse. Then, for each trajectory,
perception schedules were generated using both the greedy
and the belief planning algorithm. Each perception schedule
was executed autonomously by the robot K times. The
schedules are shown in Figure 9. The first two trajectories
were travelled K = 3 times each, and the last trajectory
K = 5 times.

All trajectories driven when executing the perception
schedules remained within the safe area as required by the
feasibility constraint. For each trial, the perception related
energy, EP , the motor power consumption, EM , the propor-
tion of the saved perception related energy, ∆EP , and the
total saved energy ∆E were recorded and compared to the
power consumption when localising throughout the traverse.
The mean values over the K trials for each trajectory are
summarised in Table II. In Figure 10, we provide details
on part of the third trajectory, illustrating the actual path
traversed by the robot following the schedule produced
by the Belief Planning algorithm. On average we can see
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I Perception K EM EP ∆EP ∆E

schedule [Wh] [Wh] [%] [%]
All-time 3 3.1091 0.5140 0 0
Greedy 3 3.0247 0.2452 54.15 9.75

Belief planning 3 2.9894 0.2165 58.44 11.52
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II Perception K EM EP ∆EP ∆E

schedule [Wh] [Wh] [%] [%]
All-time 3 2.3364 0.4203 0 0
Greedy 3 2.2284 0.2131 48.88 9.42

Belief planning 3 2.2136 0.1903 53.59 12.80
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II

I Perception K EM EP ∆EP ∆E
schedule [Wh] [Wh] [%] [%]
All-time 5 2.9494 0.4565 0 0
Greedy 5 2.7886 0.2794 38.73 9.92

Belief planning 5 2.8136 0.2459 46.38 10.10

TABLE II
ENERGY USAGE ALONG THE THREE TEST TRAJECTORIES. EACH TABLE

CORRESPONDS TO ONE TRAJECTORY AND SHOWS THE ENERGY USED BY

THE MOTORS EM , THE CAMERA EP , THE PROPORTION OF SAVED

PERCEPTION RELATED ENERGY ∆EP AND TOTAL ENERGY ∆E .
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Fig. 9. Perception schedules for three different trajectories and respective perception energy savings ∆EP , generated by the Greedy algorithm (top row)
and the Belief planning algorithm (bottom row).

that the greedy algorithm was able to save around 47.3%
of the energy associated with sensing (9.7% of the total
energy usage) while employing the Belief Planning algorithm
resulted in a reduction in perception energy of 52.8% (11.5%
of the total).

If we examine Figure 9 in further detail, we can observe
that the shape of the trajectory plays an important role
in the energy savings. In particular, the straight segments
of the trajectories require localisation less often than the
ones characterised by turns. We also notice that the Belief
Planning method exhibits the optimised behaviour described
in Figure 5. Our assumption that the execution of the
perception schedule did not cause an increase in motor
energy consumption has been validated empirically during
these trials. Surprisingly, we observed the opposite in our
experimental results. The motor energy was slightly lower
when following the perception schedules. We explain this by
the fact that the robot performed fewer feedback corrections
when the localisation system was turned off.

It is also interesting to observe that even though the
second and the third trajectory have similar length, the energy
consumed by the motors is higher for the second trajectory.
We attribute this to the difference in terrain (grass vs. gravel
paths), and the more complex trajectory. This requires the
camera to be switched on for longer for both algorithms.

Finally, we performed a simulation-based analysis of the
behaviour of the planning algorithms when varying key
system parameters. Figure 11. shows the proportion of the
perception-related energy saved, ∆EP , after changing the
allowed corridor width γ, the time necessary for the local-
isation system to boot, Tstart, and the confidence thresh-
old, pconf for the first trajectory. Increasing the confidence
threshold as well as tightening the corridor or decreasing the
boot time produces a noticeable decrease in energy savings

Path to follow

Safe corridor

Trajectory of robot
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start

Fig. 10. Part of the second teach run and the actual trajectories taken by
the robot while following the perception schedule. While the robot does not
follow the trajectory exactly, it never leaves the safe area [green].

for both algorithms. When increasing the camera boot time
the greedy algorithm performs progressively worse than the
optimal Belief Planning algorithm. This is attributed to the
fact that longer boot times have a bigger impact on the
schedule for even slightly complex trajectories.

VI. CONCLUSION
This paper explores the efficacy of scheduling robot per-

ception in order to save energy when following a planned
path. This is fundamentally different to the more common
approach of minimising motor energy by altering the robot’s
trajectory. Our perception scheduling problem is framed as
a belief space planning task which explicitly accounts for
localisation startup cost as well as pose uncertainty while
the main localisation system is turned off. This allows for
both optimal schedules to be computed and performance
guarantees to be provided regarding the allowable deviation
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Fig. 11. Perception energy savings ∆EP as a function of the corridor width γ, the camera booting up time Tstart and the confidence threshold pconf .
Increasing the confidence threshold as well as tightening the corridor or decreasing the camera booting time, produces a noticeable decrease of the energy
savings for both algorithms.

from the intended trajectory. Using 1.8km of autonomous
traversals our perception schedules are demonstrated to save
a maximum of 58% of the perception energy, which accounts
for 11.5% of the total robot energy expenditure. This is
in comparison to a simpler greedy approach, which saves
5.5% less energy on perception on average than the optimal
solution based on dynamic programming. This is a function
of trajectory shape as well as the robotic platform used. A
more in-depth characterisation of this dependency, together
with intelligent detection and handling of situations if the
robot exits the safe corridor, is subject to further work. In all
scenarios greater accuracy can be obtained with more precise
models of robot drift and energy usage. Other avenues for
further investigation include an intelligent the joint optimi-
sation of robot trajectory and perception schedule in order
to achieve even higher energy savings. This will need to be
balanced with our surprising experimental observation that
the reduced feedback from when the perception system is
disabled can result in lower motor energy consumption.
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