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Abstract— This paper is about building maps which not
only contain the traditional information useful for localising
— such as point features — but also embeds a spatial model of
expected localiser performance. This often overlooked second-
order information provides vital context when it comes to
map use and planning. Our motivation here is to improve the
performance of the popular Teach and Repeat paradigm [1]
which has been shown to enable truly large-scale field operation.
When using the taught route for localisation, it is often assumed
the robot is following exactly, or is sufficiently close to, the
original path, enabling successful localisation. However, what
happens if it is not possible, or not desirable to exactly follow the
mapped path? How far off the beaten track can the robot travel
before it gets lost? We present an approach for assessing this
localisation area around a taught route, which we refer to as the
localisation envelope. Using a combination of physical sampling
and a Gaussian Process model, we are able to accurately predict
the localisation performance at unseen points.

I. INTRODUCTION

We need robots to be useful over large spatial and temporal

scales. For many application domains, the Teach and Repeat

paradigm [1] offers a way forward and this paper considers

how the framework can be extended even further. By man-

ually “teaching” the robot a desired route (e.g. by driving

it through the environment), it can autonomously repeat the

route itself many times. The core attraction of Teach and

Repeat is the opportunity it affords to duck the issue of

building a single-coordinate frame map (which is still hard

at arbitrary scales). It is the route network that matters, not

a Cartesian projection of it. Put differently, some mobile

robotics applications allow us to care not about the geometry

of the internal world model as long as the vehicle can reliably

and repeatably use it to traverse through and operate in its

workspace. This is the point we wish to emphasise in this

work. We want to adorn the Teach and Repeat map with a

locally varying spatial model which explicitly captures the

ability of the map to support localisation despite deviations

(planned or otherwise) from the taught route. In this way

we can inform planning and control decisions to reduce the

chances of localisation failure.

In the original Teach and Repeat approach, it was expected

that the robot travelled sufficiently close to the taught path to

enable localisation. Any localisation failures were assumed to

come from external factors, e.g. the appearance of the scene

changing relative to the mapped appearance. The question we

would like to ask the map is: “how far can we travel away

from the map and still remain localised?” This information
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Fig. 1. Not all places are created equal in the eyes of a localiser.
Localisation performance is strongly affected by the local environment. The
top graphic demonstrates a space where large lateral deviations from the map
can be tolerated by our localisation system, while the lower graphic gives an
example where only a small, asymmetric envelope is usable. Green borders
indicate successful localisations, while red are failures. In this paper we
look to capture this envelope of localisation via Gaussian Process regression,
informed by physical sampling.

is invaluable, as it informs the robot how far it can venture.

For example, can the robot successfully navigate around

obstacles in the taught route? Which parts of the route require

precise navigation (as it is easy to get lost in these areas),

and which can be driven approximately as the localisation

is robust to large deviations from the path? Being able to

answer these questions would also make for a more informed

planner. Venturing too far is undesirable as once the robot is

lost, it must back-track to somewhere known and try again

(if that is even possible).

The ability to localise against a visual map is a function

of many parameters. One of the most influential is the

position of the robot relative to the most relevant map point,

hence why it has typically been assumed the robot drives

along the previously mapped route. Other factors include

the shape of the trajectory, the structure of the scene, the

type of localisation system used and appearance change.

Two examples of localisation performance as a function of

lateral offset from the map are shown in Figure 1. Note how

the localisation score is different and asymmetric about the



centre line in each place.

In this work, we will look to model the envelope of a single

visual teach pass. We will refer to the area around a taught

path that can be successfully localised in as the localisation

envelope. While this additional information would be useful

for any navigation system, this work focuses on stereo vision

with sparse features. Our approach is formed from two parts.

The first models the envelope using a Gaussian Process (GP).

This takes as input a position relative to the path, and returns

a localisation score, as well as its associated uncertainty.

This uncertainty is vital for consumers of the map, such as

planners. The second part involves physically sampling the

area around the path, to provide training data for the GP.

II. RELATED WORKS

This work looks to compute the localisation envelope

surrounding a visual map. The closest related work is the

stereo vision Teach and Repeat system from Furgale and

Barfoot [1]. They calculate the localisation envelope (they

refer to it as the convergence properties) by manually placing

the camera at continuingly divergent positions until failure

at several places along the route. They then average the

results to get a single, constant envelope at all locations.

We are looking to extend this in two ways. First we aim to

create a place-dependent model of the envelope that allows

us to express the variability of the envelope along the path.

Second, we propose that the model be continually updated,

either though explicit (potentially autonomous) sampling of

the route, or subsequent repeat runs. Exploiting the mobility

of the robot to physically sample the localisation envelope

is similar to the work by Stenning et al. [2], who use their

robot to physically embody a rapidly exploring random tree

(RRT) [3].

Also extending the Teach and Repeat paradigm is the

recent work of Krüsi et al. [4] who implement a laser-based

system. They show that the laser-based approach retains

higher accuracy when navigating around obstacles. However,

their study only focuses on accuracy, and does not explicitly

model the limits of the system. This information is useful

for planning.

In addition to localisation quality, our localisation en-

velope encodes a measure of uncertainty. The presence

of uncertainty has been a topic of great interest in the

planning community. Melchior and Simmons account for

uncertainty in the planning domain by using Particles in the

RRT algorithm [5]. Lunders et al. use Chance Constrained

RRTs to fold in uncertainty, using probabilistically informed

feasibility checks to assess path validity. Prentice and Roy

present belief road maps [6], a variant on probabilistic road

maps [7], that can efficiently produce plans in belief space

and results in improved performance and accuracy. While

there exist several algorithms to include the localisation

uncertainty into planning, it is often not done in practice, as

localisation schemes typically do not offer this information

to the planners.

One of the key factors in our sparse-feature-based system

is the ability to return correct matches given our choice of

feature detector and descriptor. Feature detector/descriptor

pairs that support matching under larger image distortions

may potentially allow for a larger localisation envelope. A

significant amount of research has been spent on developing

and assessing the performance of various algorithms [8][9].

Our work may facilitate a more intuitive comparison.

III. PRELIMINARIES

We begin by briefly describing our Teach and Repeat

system, for which we are trying to estimate the localisation

envelope. It is similar to the approach described by Furgale

and Barfoot [1]. At its heart is a sparse-feature, stereo

visual odometry (VO) system. VO computes the ego-motion

between two stereo frames and has been developed by many

researchers over several decades [10][11][12][13]. Stereo VO

is popular in robotics due to its ability to provide metric pose

estimates, and while the cumulative positional error can grow

without bound, over a local window they are sufficiently

accurate for robotic tasks [14]. It is also typically more

accurate than wheel odometry [13][15].

There are many variants on the core VO idea. Our im-

plementation uses FAST [16] corners combined with BRIEF

descriptors [17]. While the BRIEF descriptor does not offer

the same level of robustness to rotation as gradient-based

methods such as SIFT [18] and SURF [18], it is significantly

faster at extracting and matching. This means that our VO

system can run at frame rate on a modest CPU-only ma-

chine. RANSAC [19], followed by non-linear least squares

optimisation is used to compute the ego-motion.

In addition to VO, the teach phase also saves keyframes,

which contain 3D landmarks with associated BRIEF descrip-

tors, at regular intervals while the robot is manually driven

along a desired route. The exact same VO pipeline, including

descriptor matching and egomotion estimation, is then used

for localisation when repeating the route. The only difference

is that the latest image from the camera — the live frame —

is matched against a stored keyframe, not the previous live

frame. This outputs a 6 Degree of Freedom (DoF) pose, p,

relative to the teach pass. For a more detailed description of

Teach and Repeat, the reader is referred to [1][20].

IV. APPROACH

A. Modelling

Given a visual map, M, we wish to estimate its localisa-

tion envelope. We describe a position relative to the path

as a feature vector x, which is defined as a function of

both the map and pose: x = f(M,p). Given this feature

vector, we wish to predict y, a score of localisation quality

at p. In this work, y is the normalised number of matched

keyframe landmarks and is a measure of localisation quality.

A score of one indicates that all keyframe landmarks will

be matched and will result in high localisation quality, while

a score of zero suggests that no matches will be found and

that localisation will fail. Additionally, we want a measure of

uncertainty on y, as we may want to incorporate the certainty

of localisation quality in planning.
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Fig. 2. The top figure shows a taught route (straight green line) and
a set of observed localisation failures (red dots). A planned repeat pass
(multicoloured line) is also shown, with blue indicating a low localisation
score, and red a high localisation score. The bottom graph shows the distance
along the route versus the localisation score, with accompanying uncertainty.
At the beginning of the repeat pass the robot is situated away from the
path. As a result the localisation score is low, but the uncertainty is high.
As the trajectory approaches the path, the localisation score improves with
increasing confidence. Towards the end of the route the trajectory passes
through an area where localisation failures have previously been observed.
In this case, the localisation score drops, but the confidence remains high due
to the previous observations. There is a temporary increase in uncertainty
as the path moves between observations.

To achieve this we use Gaussian Process regression.

GPs offer supervised non-parametric learning [21] and are

attractive for two reasons. Firstly, they do not require an

explicit model of how the localisation envelope will behave.

Secondly, they naturally handle uncertainties. We begin with

a brief overview of the GP framework.

A GP is described by a mean function, µ(x), and a

covariance function, k(x,x′). A set of input data T =
{{xi, yi}ni=1

} is used to train the GP. The set of all input

vectors is denoted as X = {xi}ni=1
, and similarly, y =

{yi}ni=1
. Then, given a set of query points X∗, we wish

to determine y∗. The joint distribution over all variables is

described by

[

y

y∗

]

∼ N
(

[

µ(X)
µ(X∗)

]

,

[

K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]

)

, (1)

where K(X,X∗) is the n×n∗ matrix of all covariance pairs

for X , X∗. The other K(·) matrices are similarly defined.

We account for observation noise by adding σ2

nI in K(X,X)
and K(X∗, X∗), where σn is the observation noise, and I is

the identity matrix.

As is often done with GPs, we assume the mean function,

µ(x), is zero. This is appropriate in our case, as in the

absence of any observations it is best to be conservative and

assume we cannot localise at an arbitrary, unseen point in

space.

We estimate y∗ by conditioning our prediction on the

training data. This results in the well known formula for

Gaussian Process regression:

p(y∗|y, X,X∗) ∼ N (ȳ∗,V[y∗]), (2)

where the best estimate of y∗ is the mean of the distribution

ȳ∗ = K∗K
−1

y, (3)

and the variance associated with this value is

V[y∗] = K∗∗ −K∗K
−1KT

∗
, (4)

where we have used the abbreviation K = K(X,X), K∗ =
K(X∗, X) and K∗∗ = K(X∗, X∗).

The final key piece of the GP framework is the choice

of covariance function, k(·). As we assumed a zero mean

function, the behaviour of our GP is entirely defined by

k(·). There exists a range of options, which allows for many

different behaviours. It allows us to encode how we expect

the input data, x and x′ to relate to each other. Typically,

k(·) also requires a set of free parameters, represented by

the vector θ. In the GP framework these are referred to

as hyperparameters. The best choice of θ is achieved by

maximising the log marginal likelihood

log p(y|x,θ) = −1

2
y
TK−1

y − 1

2
log |K| − n

2
log 2π. (5)

In this work we are interested in modelling the perfor-

mance of our localisation system as we deviate from the

taught path. While our VO system is capable of full 6

DoF pose estimation, we will only assess the localisation

performance of the system in the first two degrees, which

we refer to as x1 and x2. This is because ground based

planners typically only operate in 3 DoF Cartesian space,

[x1, x2, θ]. In this work we make the simplifying assumption

that the robot is always parallel with the path. While this is a

limitation of this study, our experience is that the localisation

envelope for rotation is relatively small. This is because pure

rotation of the camera rapidly changes the viewpoint of the

imaged scene, which leads to localisation failure.

We parametrise our teach pass with a cubic spline. Given

this representation, for a query point p∗, we can compute

the closest point on the spline. This provides us with the

signed cross track error to the teach trajectory, s, a point

on the spline, defined by the spline parameter d, and the

local curvature, c, at that point. This allows us to capture

two important factors affecting localisation, the lateral offset

to the path (with s) and the paths current curvature (with

c). We can also uniquely identify a point on the path via

d. These three parameters form the input vector to our GP

framework:

x = [s d c]T . (6)

For k(·), we chose the commonly used Matérn covariance

function [21], with v = 3

2
. This takes the form

k(x,x′) = σ2

f

(

1 +
√
3Mτ

)

exp
(√

3Mτ

)

, (7)

where τ = |x − x′|2 is the l2-norm between the two input

vectors. Our hyperparameter vector is defined as

θ = [ls ld lc σf ]
T , (8)



Fig. 3. Physical sampling of the localisation envelope. This figure shows the
original teach trajectory (solid green line) and the robot (blue triangle) taking
samples of the localisation envelope along the route. At regular intervals the
robot deviates (green dashed lines) until it experiences a localisation failure
(red stars). This operation can be performed autonomously as the robot
can use the repeat machinery to traverse the map, and VO is sufficiently
accurate to recover from temporary localisation failures. In this manner a
more informed envelope can be discovered by the robot without requiring
additional manual teaching.

where ls, ld and lc refer to the length scales for the signed

cross track error, the spline distance and local curvature

respectively. An additional term encoding the overall relation

between points is provided by σf . This is used to construct

the diagonal matrix M , which encodes the three length scales

by

M =





l−2

s 0 0
0 l−2

d 0
0 0 l−2

c



 . (9)

The Matérn covariance function is stationary, meaning that

it is only a function of the relative distance between the two

inputs, but is unaffected by the global position of the inputs in

the feature space. The values of θ are selected by maximising

equation 5.

Using the GP machinery, we can use the keyframes in the

visual map and any additional sample points to estimate the

localisation envelope. An example of this is shown in Figure

2. A teach pass is shown in the top figure (green line) with

additional observations of localisation failure (red dots). A

sample repeat trajectory is also depicted, where the varying

colours indicate the localisation score: blue corresponds to

a low value and red to a high score. The lower graphic

shows the localisation score against the distance along the

route, along with the associated uncertainty. Note that when

far from the observations of the localisation envelope the

uncertainty is high, but near observations the uncertainty

reduces.

The GP also allows us to continually refine our model of

the envelope. As more observations are taken, either from

physical sampling (discussed in Section IV-B) or straight

forward repeat runs of the environment, they can be incor-

porated to produce more informed estimates about the map.

Fig. 4. Overhead of the teach trajectory (orange line). The urban
environment offers a variety of features that affect the resulting localisation
envelope, including wide open, narrow and asymmetric spaces.

B. Physical Sampling

While the GP framework is useful for modelling the

localisation envelope, its predictions are only as informed

as the provided training data. If a teach pass is the only data

available, estimates further away from the original trajectory

are more unreliable. This is reflected by the GP’s uncertainty.

We are also limited by the fact that the actual envelope

is likely to be complex. If we are able to gather more

observations of the envelope, we can improve our GP model.

We propose physical sampling of the localisation envelope

on subsequent passes of the trajectory by intentionally devi-

ating from the route until failure. After the initial teach pass,

the robot is allowed to repeat the route using the normal re-

peat localisation framework. However, at intervals along the

route, it takes detours until it encounters a localisation failure,

at which point it returns to the path and continues onwards.

If done autonomously, the VO should be sufficiently accurate

to allow the robot to return to the localisation envelope after

a failure. The physically-sampled deviations from the path

implicitly capture features of the world, such as occlusions

and the degree of viewpoint change. This sampling process

can be thought of as a secondary part of the teach phase.

Although in this work we opt for regular sample of the teach

pass, more complex search strategies could be used. Figure 3

demonstrates our proposed sampling strategy and the output.

While this explicit expenditure of effort to perform sam-

pling can be used to bootstrap the GP, it is also possible to

use straight forward repeats of the teach pass as input to the

GP.
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Fig. 5. The teach pass (black line), with the surrounding localisation envelope. Blue indicates low localisation scores, while red marks high scoring areas.
Note how the envelope is not constant, or symmetric along the route. Inserts for areas A and B give detailed examples of the envelope, along with one
of the six repeat trajectories. The success or failure of the repeat trajectory’s localisations are indicated by green or red dots. In area A, the localiser fails
with less than 1m of deviation from the taught route, due to the significant scene change caused by the presence of the wall. Conversely in area B, the
localiser is successful several meters away, as the scene appearance does not change significantly despite large deviations. Areas C-H give other examples
for how the localisation envelope varies with the teach route. See main text for details.

V. RESULTS

To evaluate our envelope modelling, we collected several

datasets from an urban environment in central Oxford. These

centre around a 110m teach pass, as shown in Figure 4. The

route travels through a variety of structurally different spaces,

which affect the shape of the envelope. After teaching the

route, a sampling repeat pass was performed in a manner

similar to Figure 3. At regular intervals (approximately every

1 to 2 meters on the straights, and at the start, mid-point

and exit of every corner) lateral deviations were performed

from the teach pass until the localisation failed. This survey

dataset served as the training data, T , for the GP model. Six

subsequent repeat runs were performed, which deviated to

varying degrees from the teach pass. The most conservative

approximately followed the teach pass, as would be expected

in the original Teach and Repeat paradigm. The most diver-

gent intentionally deviated a long way from the path, with

the specific aim to get lost. These six repeats served as our

test data. All data were collected with a Bumblebee2 stereo

camera.

The output of the trained GP can be seen in Figure 5. The

teach pass is shown as the black line, and the surrounding

colour map is computed by sampling the GP at regular



TABLE I

PREDICTION OF GP FOR LOCALISATION SUCCESS OR FAILURE. THE

ACTUAL LOCALISATION RESULTS FOR EACH REPEAT ARE USED AS

GROUND TRUTH.

Frames Precision Recall F1

Repeat 1 1111 95.2% 100.0% 97.6%

Repeat 2 1061 99.0% 100.0% 99.5%

Repeat 3 1043 85.6% 96.0% 90.5%

Repeat 4 1040 99.0% 100.0% 99.5%

Repeat 5 1010 93.1% 99.0% 96.0%

Repeat 6 1064 99.3% 100.0% 99.7%

Overall 6329 95.5% 99.3% 97.4%

intervals1. Red indicates a high localisation score, while blue

indicates a low score. The lower right grid of images show

examples of the scene at different points along the teach

pass, with their location indicated by arrows. In the upper

part of the figure, two sections of the route are enhanced,

A and B. In each, one of the repeat passes is shown, where

the poses are indicated by either green dots for successful

localisations, or red dots for failures. The position of the

red dots are approximated by integrating the VO, which is

assumed to be accurate over short distances. This is proven

in area A, where the integrated VO position and localisation

from the rejoined path agree. To the right of each insert, two

images are shown, with one from the teach run and one from

the repeat.

The key point of this figure is to show how the locali-

sation envelope varies with the teach route. In area A, the

localisation envelope is relatively small with less than 1m in

cross track error resulting in failure. Compare this to area

B, where the system can still localise several meters away

from the teach pass. Looking at the images to the right of

each insert, it is apparent that this is caused by how the local

scene appearance changes as a function of position. In area

A, modest translations result in large changes in appearance

due to the proximity to the wall. Conversely, in area B, large

deviations result in modest appearance changes.

Following this point, it is also interesting to consider the

sample images along the taught route. Areas C and D are

relatively open, so the envelope around those parts of the

route is wide. Area H at the start of the route has a very

narrow corridor which results in an initially uncertain GP.

By place G, the space has opened out, resulting in a wider

basin. Also note here the asymmetric nature of the envelope,

caused by the presence of the fence on one side, and open

space on the other. Curiously in space F , the envelope is

also relatively narrow. This is likely caused by the presence

of the wall to the left, which results in significant viewpoint

change when deviating in either direction. Finally, towards

the end of the route in area E , we see the envelope narrow as

we approach a wall. This makes sense, as the closer we get

to the wall, the smaller the deviation required to cause the

imaged scene to change, and therefore localisation to fail.

1The rough edges stem from the sampling frequency. In this image we
sampled every 0.2m.

Teach

Repeat

1m

Fig. 6. A subsection near area F (see Figure 5) is shown on the left, along
with repeat 3. During this run, the corner was intentionally cut, resulting in a
camera direction significantly different to that of the taught route. Example
images from the teach and the repeat are shown on the right. This change in
camera angle causes localisation failures, even though the [x1, x2] position
is inside the envelope.

To assess the performance of the GP, we treat the six

repeats as test cases (remember that the GP is trained

with the single sampling run). Each of the six test repeats

are compared against the taught map, and the localisation

results recorded. The poses along the repeats are used as

input to the GP to generate localisation score predictions,

y∗. However, assessing the localisation quality, i.e. how

displaced the estimate is from ground truth, is difficult

without an accurate external ground truth source. Since we

could not rely on GPS, as its solution quality suffers in

canyon-like environments, under overhanging trees and it can

drift over time [22], we thresholded the scores and treated

the predictions as binary classifications: did the GP predict

a successful localisation or failure. The choice of binary

classification is due to the fact that our localisation system

does not degrade gracefully. The limitation of the binary

signal may be overcome by utilising the uncertainty provided

by the GP for this value. We compare this to what happened

when the repeat ran in the Teach and Repeat system, which

we take as ground truth. We tabulate the results for each

run individually, and overall, in Table I. Frames refers to the

number of stereo frames in each dataset, and the Precision,

Recall and F1 scores are computed by thresholding y at a

value of 0.4. This value was selected by plotting a precision-

recall curve and selecting a suitable operating point.

The choice of the localisation score, y, is an important

one, as it must give an indication of the localiser’s expected

performance. Here we have chosen the normalised number of

matched keyframe landmarks, but the localiser offers several

other outputs (e.g. RMS error). While our current choice of

y is a good predictor of being able to localise (Table I), it

is not perfect. In areas A and B (Figure 5) there are repeat

poses which succeed despite the GP predicting they would

fail, and visa versa. This may be why the repeat runs in

Table I have a higher recall compared to precision. One area

to investigate further is the choice of y.

Repeat 3 was one of the more divergent repetitions of the

taught route, where we intentionally cut two of the three



major corners. Part of the trajectory can be seen on the left

side of Figure 6. When cutting the corner, the heading error

relative to the teach pass becomes significant. This difference

in angle results in a different section of the scene being

imaged, as shown by the images on the right side of the

figure. This results in localisation failures, even though the

[x1, x2] position is initially inside the predicted localisation

envelope. This intentional divergence from the model is why

repeat 3 performs poorly compared to the other repeats in

Table I.

VI. CONCLUSIONS

In this paper we have presented a way to capture the

localisation envelope of a visual teach pass in the framework

of Teach and Repeat. The modelling is performed using

a Gaussian Process, which takes as input samples of the

localiser’s performance around the taught route. These can

come from explicit sampling, or simply subsequent repeat

passes. This place-dependent spatial model of localiser per-

formance provides crucial additional information for when

the map is subsequently used for planning and autonomy. We

have demonstrated our approach in an urban environment,

and validated the model’s predictions against a number

of repeat runs. Future extensions are to include rotation

in the model, investigate the influence of different feature

descriptors on the envelope, test in different environments

and incorporate scene structure into the feature vector.

While we have applied the idea of localisation envelope

to our stereo vision based system, it would be equally appli-

cable to other approaches, such as monocular vision, topo-

logical localisers and laser-based systems. By continually

improving our understanding of the localisation envelope,

we can know the limits of our system.
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