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Abstract This paper is concerned with reconstructing the metric ggonof a scene
imaged with a single camera and a scanning laser. Our aimdsdign each image
pixel with a range value using both image appearance andeteser data. We pose
the problem as an optimisation of a cost function encagsglat spatially varying
smoothness cost and measurement compatibility. In p&tigee introduce a second
order smoothness term. We derive cues for discontinuitigange from changes in
image appearance and reflect this in the objective functMamshow that our formu-
lation distills down to solving a large linear system whi@nde solved swiftly using
direct methods. Results are presented and analysed usititetig cases to demon-
strate salient behaviours and on real data to highlightweald applicability.

1 Introduction and Motivation

This paper is about dense mapping of workspaces using corptaoe cameras and
scanning lasers. Cameras provide near instantaneougeapbtine workspace’s ap-
pearance (texture and colour) but, from a single viewgliggeometrical information.
On the other hand, scanning lasers produce comparatively sparse metric sam-
pling and beyond reflectance, capture little of the scergp®arance. This motivates
us to consider how we might fuse sparse laser data and imagetet a range for
every pixel in the image, allowing us to reconstruct a 3D sceith all the texture,
colour and appearance information captured in the origmabe. The heart of the
problem is how to sensibly infer ranges for pixels which avemear any laser mea-
surements without introducing intolerable distortionsr @ethod is general in that it
is not tied to any particular 3D laser scanner mechanism omgéry. Note also that
we aim to recover the dense geometry of a scene over scalek pitwhibit the use of
other direct methods such as stereo unless a truly largdirmiseused.
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2 Related Work

The problem of inferring 3D surface models of a scene usisgrlar camera sensors
has been studied extensively over many years (see, for déadin®, 3, 4]). How-
ever, limitations in hardware and a requirement for speeatg dathering in mobile
robotics typically results either in high resolution oplianages only allowing infer-
ence of very basic 3D geometry, or, alternatively, low regoh range images which
often sample the scene too sparsely to allow for faithfubnstruction. Multiple view
reconstruction provides an attractive alternative duenea instantaneous gathering
of dense 3D data leading to dense scene reconstructionsrfrage data alone [5, 6].
Unfortunately, stereo reconstruction fidelity is limitedrange by the baseline and the
image resolution. This seriously impedes accurate renaigin beyond a few meters
from the camera. Another alternative can be found in theagtgtion of the comple-
mentary nature of vision and range sensing. While opticag@saand range images
represent different quantities, they share “similar secorder statistics and scaling
properties” [7].

Only a relatively small body of work exists on the inferen¢esarfaces by fusing
laser data and camera images. Usually, these techniquiestélxp fact that edges in
the optical image often correspond to discontinuities iptdeand that smooth sur-
faces tend to correspond to areas of similar colour andrexiui [8], depth values for
pixels in an image are inferred using belief propagation Maakov Random Field
(MRF) framework. The technique requires that the suppledje measurements con-
tain some high density areas from which to seed the solutiod,is unable to assign
depth values outside of those already in the measuremeamtstetThniques described
in [9], [10] and [7] are able to fuse the information from baiburces to significantly
improve the resolution of low quality range images. The rodtbf [9] is particularly
relevant to this work. It employs an MRF formulation with asfiorder smoothness
prior. The technique favours fronto-parallel surfaceg,dnes not suffer too greatly
from this because the range measurements are sufficiegiljareand dense, com-
ing from a special range camera sensor. This ‘pins’ the eséisnto lie near the true
surface.

In contrast to [9] the method presented here is targetedyat@nbination of com-
monly available monocular camera and scanning laser. ticpkar, this requires in-
ference of range measurements based on sparse, inhomsgamge data. In such
cases, the fronto-parrallel tendency of inferred surfacgsced by only considering
a first-order smoothness prior leads to increasingly inateueconstructions. We ad-
dress that issue by introducing a second-order smoothniessyhile still framing the
problem as a well-understood optimization of a linear aysté equations.

3 Problem Formulation

In this section we shall show how a general description ofpttelem can be for-
mulated in such a way that in the end, only the solution of glsitinear system is
required. We begin by introducing our notation.
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We are given a by v pixel image.# and a ® point cloud ofk laser measurements
& ={l1---I}. We shall use the notatidn to represent thé" pixel in a vectorised
image (all pixels stacked in a single vector of lenbitk= u x v). For eacH; we asso-
ciate a range;. Our task is to use bott¥ and.# to find a vectox = [x3,%z---xn]" -

a range for every pixel in the image. We shall also refeg s a “range node”. Each
point in . can be projected into under a distortion correcting camera model and
associated to the nearest pixel. Each laser point thensy&ldnge measurement
tied to pixell;. Note the laser measurements are sparse so not every pikeavwe a
range measurement — in fact very few will. We use the notatien? to imply the
index variabld ranges over all pixels which have an associated range nexasut.

We shall pose the problem as one of finding the optimal rangeke* such that

X" = argminfA1A20s(X, 1) + A1(1—A2)Oc(X,1) + (1 — A1)Oq4(x,2) } Q)

where®s(x,1) is a first order cost penalising depth discontinuit®g(x,|) is a sec-
ond order cost penalising curvature aBgl(x,z) is a data cost penalising errors be-
tween inferred ranges and observed range measurementscalaesi;, A, € [0, 1]
are weightings between the three terms. We shall now canidse terms in more
detail.

3.0.1 Data Cost

The data cost is defined as a squared error between assigmgggXaand measured
range z

Gu(x.2) = Y ai(x—2)° 2)
ic?
= W(x—-2)[[? @)

whereW is a diagonal matrix with entries

g Ifie?
Wi = 4
M {O otherwise “)

andg; is a measure of our confidence in measuremgent

3.0.2 Discontinuity Cost

As in [9], we use a depth smoothnesdigst-order prior of the form

a(xN=y 3 &;j—x)’ (5)

T jem (i)

where 4/ (i) are the horizontal and vertical neighbours.oks edge strength between
nodes we use an exponentiatedhorm of the difference in pixel appearance
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€= eXp—T (6)
d

wherec; is the RGB colour vector of pixéland gy is a tuning parameter (smatl
increases sensitivity to changes in the image). Equatiora Ine written in matrix
form as

Os(x,1) = [|S|[? @)

where each row of represents a weighted average of a pair of adjacent rangesnod

3.0.3 Smoothess/Curvature Cost

In contrast to [9] we make the further assumption that in theeace of cues to the con-
trary, such as discontinuities in appearance, the gradiesurfaces varies smoothly.
Under thissecond ordersmoothness assumption, given a neighbourho6d) of
nodex; we may make a range predictiands a linear combination of neighbouring
rangesx; for j € .4/ (i). This allows us to write simply

% = Px 8)

whereP is a suitably formed prediction matrix. We define curvatunst®©;(x,1) in
the form

Oc(x,1) = ||R —x][? 9)
=||(P—1)x||? (10)

Here,1is the identity matrix. While details of ho®is created will be postponed until
Section 4 we may proceed by understanding this cost as;therm of the deviation
of x from the prediction based on modeling surfaces as localijyicoous and smooth.

3.1 Reduction to Ax="b

We may further expand Equation 3 to the form
O4(x,2) = X" WTWx — 22TWTWx +z"WTwz (12)
and Equations 10 and 5 to
Ac(x,1) =x"RTRx, 65(x,1) =x"STSx (12)

whereR=P—1.
Substituting Equations 11, 12 into 1 and solvingxXaeduces the problem to

Ax=b (13)
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with

b=wWTwz (14)
~ AMARTR+A1(1-A2)STS+ (1-A)WTW

A 1-A1

(15)

Equations 13 to 15 imply that all we need to do to perform thiénaipation is to
solve a large sparse linear system.

4 Constructing The Prediction Matrix

In this section we detail how the prediction matfixs created. For simplicity we show
only 1D cases but it should be noted tRatontains elements to penalise curvature in
both horizontal and verticalirections.

We decomposP® into a weighted sum of three prediction operators - extratjpmh
from left and right, and interpolation.

P=W_P_.+WnPwm +WRgrPRr (16)

where subscriptd,M,R imply left-extrapolation, mean (interpolation) and right
extrapolation respectively. TH&'’s are suitably constructed weighting matrices de-
rived from image appearance which we shall expand uponlghieiBection 4.1. The
use of extrapolation and interpolation can be understoaphically with reference to
Fig. 1 which shows a simplified 1D case.

left extrapolate

interpolate

{ weighled prediction

right extrapolate

Image Pixels

Fig. 1 Depth prediction via weighted interpolation and extrapotain 1D. The predictions of the

rangexp by left and right extrapolation and interpolation are showfaded grey. The discontinuity in

the image shown at the bottom of the figure (each range node hagla gixel attached to it) causes
the left extrapolation to be down-weighted — the image edgecige for a possible discontinuity in
range between node ; andx,. The final predictionxg is shown in the center.



6 Alastair Harrison and Paul Newman.

4.1 Anticipating Depth Discontinuities from I mage Cues

The image# can be used to provide cues about the behaviour of the swiabepe
to reconstruct. Our basic assumption is one that has beehbefere [9] — sharp
changes in range tend to appear as changes in appearanes)(gdgn image. We
have a range node for each pixel (see Equation 16) and ite ealu be predicted by
a weighted sum of extrapolation and interpolation from ggghbours. We describe
only the horizontal case for simplicity, but our method iplégd in the vertical case
too. For each nodg the weighting is determined by the properties of pixahd its
neighbourhood. Broadly speaking, if a pixel is identicalts$deft and right neighbours
then pure interpolation will occur. If however there is acdistinuity in pixel appear-
ance then interpolation will be down weighted and eithetr defright extrapolation
emphasised.

To explain how the weighting matricé¥ v r are created we shall consider the
simple 1D case shown in Fig. 2. Interpolation is preferablextrapolation. With this
preference in mind and considering nagein Fig. 2, we can write the importance
weights of left / right extrapolation and interpolationvégy,r

Wm = e<,1,0>e(0_,1) (17)
Wr = €2 _1)€—10)(1—Wm) (18)
Wi = €21)€1,0)(1—Wm) 19)

with g j as defined in Equation 6. The above relationships can be stoder by not-
ing that if the pixel attached to range noxgis identical to its neighbourse(_s g
andeq ) are unity) thenwn = 1 andw;, = w; = 0 - interpolation has 100% of the
weighting. As the pixel$ 1 andl; become increasingly different, the left and right
extrapolations receive more weight. In the limit, if two gl are entirely different,
the edge weight between them tends to zero and the attachge n@des will have
no direct link between them. It does not make the two nodespgaddent - there may
be other dependencies via long circuitous routes througgr etodes. It does however
mean that range discontinuities across this boundary arperalised because the
range prediction made by multiplication Byis based on an extrapolation from one
side and not an interpolation across the discontinuitys Ta key point in this work.

@e-z,-1@ \\ojemmemQ

Fig. 2 A 1D chain of range nodes (a sectionxgfand the edges between neighbours. Considering
Xo, right extrapolation uses only nodes to the right and leftagdlation uses the two left hand nodes.
Interpolation uses nodes ; andx;. The edges between nodes are a function of the difference in
pixel appearance between adjacent range nodes (each raagésrassociated with a single pixel in
the image).




Image and Sparse Laser Fusion for Dense Scene Reconstruction

5 Results

Fig. 3 shows the results of processing two synthetic scelmethis case the problem
size is small withx having just 2500 elements (each elemenkaorresponds to a
vertex in the mesh). With regard to the “three plane” case hotv using just a few
laser points in each distinct region of the image resultiad distinct planes being
generated in the reconstructed scene. The strong edgesiimalges prohibit informa-
tion flow between planes. For the nodes at the very edge ofre plee extrapolation
and interpolation weights have become such that the noddysrdluenced by (cou-
pled to) other in-plane nodes. The 1st order method alonedbla to reconstruct the
planes correctly as it tries to make all nodes have similagea.

In the case of the “dome” example note how while there is ngeatiscontinuity
there is a sharp discontinuity in surface gradient arouedpttrimeter of the dome.
Note also that the first order smoothness term is unable tmstact the curvature
of the dome in the absence of laser measuremnents. In contitisa second order
smoothness cost the curved shape of the dome is recoverkd hislis an important
result. The generated curved surface is the smoothestcsuitfat can explain the
existing measurements and minimise the bust in second sngdeothness constraints
implicit in P.

if
0l

I
i

(a) Three Planes

IR
"0":‘:“"""’ S

I
%

(dj Dome Image (e) 1st order smoothness (f) 2nd order smoothness

Fig. 3 Synthetic data examples which highlight important aspectsuofapproach. Each node in

the mesh represents a single range node projected out from an pixageThe images for each of

the two cases are shown on the left. In all figures sparse laser meesiseare shown in red. Note
how the discontinuities in the image appear as discontinuitigie reconstructed surfaces. First-
order smoothness alone tends to make surfaces have the same dapthvhateas second-order
smoothness is able to correctly reproduce both planar andasuréaces.

We now turn to processing some real data. We used a noddirgISUS200 laser
scanner on a mobile robot to capture laser data. Images \aptared by a camera
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mounted above the laser with a wide angle lens. The imageingbi$ case was 518
by 259 pixels resulting in some 134,162 range nodes and wrshoFig. 4 with laser
measurements projected into it. For scale, the target ioadp7m wide. The recon-
structed model is shown alongside. Using second-order #tmess alone provides
reasonable results, but tends to introduce ‘rippling’ fades around noisy measure-
ments. A small amount of first-order smoothness is necessaigmp the oscillations.

Fig. 5 shows points of interest in the reconstruction. Wensao outdoor result of the
same problem size in Fig. 6.

Fig. 4 Results from an indoor dataset. Image and laser measurements aftttend the recon-
structed model on the right.

Fig. 5 Details of a reconstructed scene from Fig. 4. Note the detailetmooth floor and inferred
sharp range discontinuity between two walls.

The algorithm is implemented in Matlab and the linear solv@erformed with
Matlab’s backslash operator (though there is no reasonamasé¢ another method
such as Conjugate Gradient). The Three Planes case and e @se in Fig. 3, with
2,500 nodes both took 0.021 seconds to solve in a singldigerdor the real data
case in Fig. 4 with 134,162 nodes, the algorithm took arouhdexonds on a 2Ghz
dual core laptop.

We now present some numerical analysis of the performanceiroépproach. It
is a hard task to obtain a ground truth geometry for the cotepkal scene. Instead
of comparing pixel ranges to ground truth we compare thenagerl measurements
taken of the scene over a long period of time and which are s@d in the optimi-
sation. Concretely, we collect a very dense cloud of lastx dathe scene and draw
from that a small sparse test set with which we reconstrecstiene shown in Fig. 4.
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Fig. 6 Results from an outdoor dataset. On the left is the image with lasasurements overlaid.
On the right is the reconstructed model.

The remaining laser data constitutes a dense hold out stfoarach unused laser
measurement we can compare measured range to estimated Fagg7(a) shows
regions of the workspace which contain pixels with signifioarrors.

Mean
— — — Median|
30

0 005 0.1 0.15 02
Measurement Density (measurements/pixel?)

(@ ' (b)

Fig. 7 The leftimage shows a comparison of range estimates to groundasathdata for the indoor

case. Areas in yellow show deviation from ground truth, witghieir intensity representing larger
errors. Laser measurements are shown in red. The graph shows ametag# the estimate relative

to the mean density of range measurements, when compared to laseremeassrin the hold out

set. The laser has a precision of 15mm.

It is also instructive to consider how the accuracy of ourrepph depends on
the density of laser measurements. Fig. 7(b) shows how #tiststs (mean and me-
dian) of the pixel range errors change as a function of measet density. Note
that as expected, as measurement density increases tls@qreéends to that of the
laser itself around 15mm. The results given in Figs. 4 anceperating in the 01
measurements/pixetegion.

6 Conclusion

This paper has introduced a novel technique for fusing sparer data and images
to enable a dense 3D scene reconstruction. Above and beyisticig prior work this
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technique uses a second order smoothness term which allaa&xtrapolate both
planar and curved surfaces. The problem is formulated asdhgion of a sparse
linear system, which allows the use of fast optimizatiorhtegues. The technique
was applied to both illustrative synthetic cases as weleatdata recorded in indoor
and outdoor scenes containing challenging geometry.

The qualitative and quantitative results presented haggesi that our system pro-
vides 3D reconstructions of reasonable quality. Neveed®lthere is room for im-
provement. In particular we must consider how we can inereabustness to erro-
neous laser measurements (away from image edges) and hovgwefuse multiple
scenes in a principled way. The flip side of this problem isdiag bona-fide discon-
tinuities in range when there is no change in image appearamt vice versa.
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