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Abstract— We propose a calibration method that automati-
cally estimates the extrinsic calibration between a sensor pose-
graph from natural scenes. The sensor pose-graph represents
a system of sensors comprising of lidars and cameras, with-
out sensor co-visibility constraints. The method addresses the
fact that each scene contributes differently to the calibration
problem by introducing a diligent scene selection scheme.
The algorithm searches over all scenes to extract a subset of
exemplars, whose joint optimisation yields progressively better
calibration estimates. This non-parametric method requires
no knowledge of the physical world, and continuously finds
scenes that better constrain the optimisation parameters. We
explain the theory, implement the method, and provide detailed
performance analyses with experiments on real-world data.

I. INTRODUCTION

It is impossible to overstate the importance of good
calibration. Within the mobile robotics domain, the use of
complementary sensors like lidars and cameras is ubiquitous,
which makes spatial calibration between lidars and cameras
an imperative and very challenging, problem.

Accurately calibrating multi-modal sensors allows photo-
realistic renditions of the environment within which a robot
traverses, such as that shown in Fig. 1. Manual measurement
of the true sensor pose is prone to errors due to many
reasons, primary among which is that the sensor’s protective
casing often occludes the sensing element. Conventionally,
calibration of lidar-camera systems is performed using dedi-
cated targets and manual selection of lidar-camera feature
correspondences the majority of which typically require
simultaneous observation by the sensors under consideration.

In this paper, we propose a generic calibration algorithm,
and apply it to calibrate a sensor system consisting of 2D
lidars and cameras, where the sensor fields-of-view (FoVs)
are not required to overlap. This relaxation on sensor co-
visibility makes the problem even harder to solve. To com-
plement the calibration framework, we propose a method
of diligent scene selection that does not treat all observed
scenes as equal. This is particularly important in a data-
driven approach such the one we propose here.

A. Literature Review

The existing paradigm of extrinsic calibration techniques
is to employ the use of known calibration targets like fiducial
markers or planar checkerboards [1]–[3]. An early imple-
mentation of this technique is described in [1] where Zhang
et al. [1] minimise the reprojection error of checkerboard
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Fig. 1: Lidar-Camera Calibration: An autonomous vehicle is shown trav-
elling through a coloured 3D point cloud created by fusing data from a
2D lidar and a multi-camera setup. Vehicle pose is obtained from a stereo
camera mounted on the front (facing-forward), and a 3D point cloud is
created from a lidar mounted at the back (push-broom). Lidar data is
coloured using images from side-facing monocular cameras. This photo-
realistic reproduction of the environment is only possible due to ‘good’
calibration. We generate a swathe of 2D lidar scans (shown as yellow points)
to mimic sensor fields-of-view overlap as a function of vehicle motion.

features observed simultaneously by a camera and 2D lidar.
Also using a checkerboard, the authors of [3] calibrate a 2D
lidar to a camera by initially computing the relative transform
using six measurements of the target, followed by solution
refinement using RANSAC-based least-squares.

An extension of [1] for application to 3D lidars is de-
scribed in [4]. The checkerboard plane is extracted in both
the laser and camera data, and the relative position of each
sensor is determined by aligning the plane normals obtained
from multiple scans. Unnikrishnan et al. [5] provide a 3D
lidar-camera calibration toolbox that iteratively minimises
a geometric planar constraint-based nonlinear least-squares
cost function. In another method for calibrating 3D lidars,
Mirzaei et al. [6] decouple the problem of intrinsic and
extrinsic calibration into sub-problems. Initial estimate re-
finement is carried out for each sub-problem by minimising
a batch nonlinear least-squares cost function. Geiger et al. [7]
provide a method that uses multiple planar checkerboards to
calibrate a multi-beam lidar to multiple cameras, using only
a single camera image. This significantly reduces the data
processing overhead.

Interestingly, the methods listed above are only applicable
in the presence of known calibration targets and require
these targets to be in the fields-of-view (FoV) of all sensors.
Some methods that perform calibration without the presence
of fiducial targets have been proposed recently. A target-



less calibration technique is proposed by Scaramuzza et al.
[8], wherein the parameters are computed by applying the
perspective-from-n-points (PnP) algorithm [9] on manually
selected point correspondences between camera pixels and
lidar points. Levinson et al. [10] relax the need for user input
by discovering and correlating edges in an omnidirectional
camera image to discontinuities observed in 3D lidar range
measurements. Pandey et al. [11] maximise the Mutual
Information by registering reflectance values obtained from
a Velodyne 64-beam lidar to camera pixel intensities.

It has been shown that natural scenes can cause calibration
to be unreliable or fail completely in some instances [10],
[12], [13]. To the best of our knowledge, there has been no
explicit attempt to address this issue. Our automatic scene
selection method ensures that failure cases are excluded from
the scene set used for calibration.

B. Motivation and Contribution

Sensor co-visibility is essential to apply the methods
listed above. This imposes limitations on designing sensor
configurations for a given application. In addition, 2D lidars
are smaller, cheaper and produced on a larger scale than 3D
lidars thus making them favourable for commercial robotics.

Our motivation is life-long calibration. During the lifetime
of a robot, calibration may change during operation, which
could lead to a need for periodic recalibration. Target-
based calibration becomes impractical for working robots.
We propose an automatic and diligent calibration method,
where calibration is performed from natural scenes collected
in the robot’s workspace.

The accuracy of data-driven calibration methods is reliant
on sensor observations. Each scene contributes differently
towards solving the calibration problem. For example, data
collected in an urban environment has a higher probability of
entailing structural information like lines and planes than if
the data were collected in an off-road environment, where
it may be relatively featureless (e.g. sky, desert, etc.), or
noisy (e.g. foliage, etc.). We tackle this by proposing a scene
selection scheme, that searches over all available scenes and
extracts a subset of exemplars that are ‘ideal’ for calibration.

The proposed method ranks individual scenes based on
a continually updated objective function profile. We exploit
the fact that the objective function embeds scene appearance
and structural information, which would make it suitable for
calibration. In this way, we eschew the need for a dedicated
one-shot calibration phase, akin to that of [7], and opt instead
for a continual policy of improvement. This is advantageous
as it means we do not need to design a calibration scene
that is specifically suited for the particular geometry of the
system. We demonstrate that suitable scenes are discovered
in an unsupervised manner over the operational lifetime of
the robotic platform.

In this paper, we employ these diligently selected scenes
to calibrate a sensor pose-graph using an extension our
previous work [14]. Therein, we described an automatic,
targetless, scene-induced method for extrinsic calibration of
push-broom 2D lidars with a stereo camera. A 2D lidar
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Fig. 2: Sensor Pose Graph: A setup with multiple local sensor frames of
reference; the lidar frame {L} (red), the camera frames {Ca} (green) and
{Cb} (blue), associated with each camera of a stereo camera unit, and
the camera frame {Ma} (pink) associated with a monocular camera. The
solid curved arrows denote the 6-DoF transforms between the individual
frames, where the black arrows denote the transforms to be optimised, and
the orange arrows denote inter-camera transform measurements. The dashed
black curved arrow indicates the ability to augment an existing sensor pose-
graph with additional sensors.

would have to be configured in such a way that it produces
a 3D swathe from ego-motion. The extension allows for any
number of sensors to be integrated thus providing a complete
lidar-camera system configuration for practically any robot.

II. PROBLEM AND SOLUTION OVERVIEW

For ease of understanding, we first recapitulate the calibra-
tion problem from [14]. Subsequently, wherever necessary,
the calibration problem is extended to handle calibration of
additional sensors.

In [14], the global calibration problem is decoupled
into sub-problems as a closed-loop, hierarchical relationship
between two alternating optimiser levels, distributed over
a lower-level and an upper-level. The lower-level solves
NCNL problems, with NC being the number of cameras and
NL being the number of lidars. The upper-level implements
a nonlinear least-squares refinement step to minimise the
error between the solutions computed by the NCNL lower-
level optimisers. The upper and lower-level optimisers are
linked with a quadratic penalty term [15]. Optimisation stops
when time allotted for optimisation elapses, or a user-defined
threshold is satisfied.

A. Notation

A six degrees-of-freedom (6-DoF) rigid-body transform
that registers entities defined in source frame {A} to des-
tination frame {B} is described by matrix GBA ∈ SE(3).
Matrix GBA is parameterised by a tuple gBA ∈ <6, where
gBA = (tx, ty, tz, θ, ρ, ψ), with tx, ty , and tz being the
relative translation components in metres, and θ, ρ, and ψ
being the relative rotational components in radians, i.e. roll,
pitch, and yaw angles, respectively.

Fig. 2 depicts a case where NC = 3 and NL = 1.
The tuples gCaL and gCbL define transforms that register
an entity defined in lidar frame {L}, to a frame associated
with each camera of the stereo camera unit. The tuple
gMaL defines transforms that register an entity defined in
lidar frame {L}, to a frame associated with a monocular



camera. The tuples ḡCaCb
and ḡCaMa

define measured rigid-
body transforms, that register entities defined in {Cb} and
{Ma} to {Ca}, respectively. The transforms gCaL, gCbL,
and gMaL are denoted by solid black curved arrows, while
the inter-camera transform measurements ḡCaCb

and ḡCaMa

are denoted by solid orange curved arrows. The black dashed
curved arrows show that an existing sensor pose graph can
be augmented with additional sensor nodes. Note that each
additional sensor node Mp would require the knowledge of
the tuple ḡCaMp

.

B. Swathe Generation Background

Vehicle motion is necessary for lidar swathe generation
[16]. Our approach is related to the cross-calibration method
proposed by Napier et al. [12], and is detailed in [14].

We exploit vehicle motion to generate a swathe of lidar
scans for generating a 3D point cloud. By assuming the
consequent overlap between the FoV of both sensor modal-
ities as a result of vehicle motion, we project the generated
swathe into the relevant camera’s image plane to compute a
similarity measure between sensor observations.

We use a stereo camera to obtain the vehicle trajectory
via visual odometry (VO). From the method in [14], a point
p = [x, y, z]>, when observed in the lidar frame

{
Lj
}

at
time j, and in the camera frame

{
Ck
}

at time k, can be
registered to a common frame of reference {R} by:

Rp = gRCj ⊕ gCjLj ⊕ Lj

p, (1)
Rp = gRCk ⊕ Ck

p. (2)

The symbols ⊕ and 	 are composition operators. Eqns. (1)
and (2) show that any p ∈ <3 observed in both sensors
at different times can be projected to {R}, if accurate
estimates for camera pose at times j and k can be obtained
from VO, and if an optimised rigid-body transform gCjLj

is available. Thus, swathe generation is a function of the
extrinsic calibration parameters to be optimised.

This paper focuses on optimising gCjLj .1 In the following
section, we describe the scene selection process to facilitate
life-long calibration.

III. DILIGENT SCENE SELECTION

Not all scenes are equal. Calibration targets are designed
to provide regular, strongly discernible signals in both the
camera image and lidar modalities. In this section we discuss
the general characteristics of scenes that make them more or
less suitable than others. More importantly, we also need to
specify what it means for a scene to be suitable.

We start by imagining an ideal cost function, which may
resemble that in the left-hand plot of Fig. 3, which is
locally convex, with a distinct minimum and a large second
derivative at that minimum. With these desirable properties,
let us first select a calibration cost function.

1For brevity, we will drop the time-index from the notation wherever
possible in subsequent sections.
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Fig. 3: Good and Bad Scenes: Top row (left) shows uniformly and well lit
scene with distinct road markings, and an image under shade (right), with
overexposed regions in the sun. Shapes of their corresponding cost function
in which we seek a global minimum are on the bottom row.

A. Normalised Information Distance (NID)
Normalised Information Distance D(X,Y ) is a measure

of the statistical correlation between two discrete random
variables X and Y . We define X to be the reflectance value
for a point p ∈ <3 observed by lidar L, and Y to be the
image intensity value of the pixel to which p is projected to,
in camera C. For X and Y , NID is defined as:

D(X,Y ) =
2H(X,Y )−H(X)−H(Y )

H(X,Y )
, (3)

with, H(X) = −
∑
x∈X

px log(px), (4)

H(Y ) = −
∑
y∈Y

py log(py), (5)

H(X,Y ) = −
∑
x∈X
y∈Y

pxy log(pxy). (6)

In Eqns. (4), (5), and (6), px is the marginal pdf of X , py is
the marginal pdf of Y , pxy is the joint pdf of {X,Y }, and
H(X), H(Y ), and H(X,Y ) denote the entropy of X , the
entropy of Y , and the joint entropy of {X,Y }, respectively.
The symbols X and Y are the alphabets of X and Y .

NID is a true metric [17]. Thus, it is symmetric, non-
negative, and bounded, i.e. 0 ≤ D(X,Y ) ≤ 1, where
smaller values indicate greater similarity between the distri-
butions. NID satisfies the triangle inequality, i.e. D(X,Y )+
D(Y,Z) ≥ D(X,Z), and D(X,Y ) = 0⇐⇒ X = Y .

These properties make NID an attractive metric while
designing optimisation problems. Posed as a localisation
problem, the authors of [18] use the NID as a metric to
match live camera images with a prior 3D map generated
from cameras and laser data. Herein, we use the NID as a
metric for the calibration problem.

B. The ‘Ideal’ Scene
In real-world environments, sensors are often exposed to

signals that are not necessarily co-observed. The camera



Fig. 4: Scene Descriptor: A visual representation of the scene descriptor
φj(θ) which is formed by sampling around the located calibration gCL,
and finding the corresponding value according to Eqn. (7). This example
corresponds to left-hand graph of Fig. 3.

observes light from secondary sources, which give rise to
numerous irregularities like specular reflection, bloom, over-
exposure and shadows, all of which will be absent from lidar
reflectance (although lidars can encounter specular reflection
from its own source). The immediate effect these have is
on the mutual information between the lidar reflectance and
camera image; NID increases, raising the latent minimum.

Instead of attempting to classify a scene based on its visual
and geometric cues, which could differ drastically depending
on the lidar-camera configuration, we opt for an analysis of
the objective function that the lidar-camera pair produces.
This is advantageous as it allows our method to generalise
over any given sensor configuration or environment.

To represent the NID cost function produced by the j-th
scene sj as a discrete vector, we draw samples θ{1,...,N} from
the 6-DoF parameter space around the optimal gCL. We use
these N samples to form a descriptor φ ∈ <N , where the
n-th element of φ is:

φjn(θn) = Dj
(
X,Y ; gCL ⊕ θn

)
−Dj

(
X,Y ; gCL

)
. (7)

The term Dj(X,Y ; gCL) removes the NID offset to produce
comparable descriptors for each scene, such that φ(0) = 0.
A visual representation of the resulting φj(θ) from Eqn (7)
is shown in Fig. 4. The descriptor aggregate φ̄ is obtained
by finding the mean over multiple scenes:

φ̄(θ) =
1

S

S∑
j=1

φj(θ). (8)

Since φ̄ is constructed using a sample of multiple frames, it
gives us an insight into the nature of the data. Subsequently,
for each scene, we compute a relative similarity measure Kj
with respect to φ̄. This score is obtained for each 6-DoF
parameter, α, individually, and is defined as:

Kjα(φ̄α,φ
j
α) =

φ̄α · φjα
‖ φ̄α ‖2

. (9)

The scalar Kjα > 1 indicates that sj is likely closer to our
‘ideal’, and Kjα < 1 represents a flatter, and less confident
cost basin. The K value allows us to rank every scene in the
dataset. We do this according to the minimum K of the α
parameters for a single scene, so that:

Kj = min(Kj). (10)

Thus, given gCL, and the subset S used to generate φ̄, we
can define the ‘ideal’ scene as being that which has the
highest value of Kj . The selected scenes are used to perform
calibration, which is described in the following section.

IV. CALIBRATION METHODOLOGY

In this section, we recapitulate and extend the calibration
optimisation process described in [14]. We show how the
method from [14] can be applied when an existing sensor
pose-graph is augmented with additional sensor nodes.

We assume that all sensors have known intrinsic pa-
rameters. To exploit the constraints afforded to us by a
multi-camera setup, we measure the inter-camera transforms.
Alternately, these may be provided by the manufacturer in the
case of a stereo-camera, or by CAD models of the platform.

A. Calibration via Alternating Optimisation

Given a scene observed by camera Cp and lidar L, we
seek to minimise the dissimilarity between the pixel intensity
values associated with the observed scene in camera Cp,
and the reflectance values associated with the lidar points
measured by the lidar L, projected in the p-th camera’s image
plane. Let {Ca} and {Cb} be the frames associated with each
camera of a stereo camera unit, and let {Ma} be the frame
associated with an additional camera (see Fig. 2).

The constrained optimisation problem to calibrate a lidar
to the camera system described above is defined as:

min.
gCaL,gCbL

,
gMaL

fa
(
gCaL

)
+ fb

(
gCbL

)
+ fm

(
gMaL

)
s.t. gCaL 	 gCbL = ḡCaCb

, and
gCaL 	 gMaL = ḡCaMa ,

where, fa ≡
1

Sa

Sa∑
sa=1

Dsa
(
Xa, Ya; gCaL

)
,

fb ≡
1

Sb

Sb∑
sb=1

Dsb
(
Xb, Yb; gCbL

)
,

fm ≡
1

Sm

Sm∑
sm=1

Dsm
(
Xm, Ym; gMaL

)
.

(11)

The terms Xa, Xb, Xm, Ya, Yb, and Ym denote measure-
ments of the discrete random variables X and Y made by,
or projected to, the camera indicated by the subscripts a,
b, and m, respectively. As explained in III, the scalars Sa,
Sb, and Sm are the number of diligently selected images
used to widen the cost function convergence basin [11], [12].
Each camera may be provided a different set of scenes. The
transforms ḡCaCb

and ḡCaMa
are assumed to be known, and

gCaL, gCbL, and gMaL are the transforms to be optimised.
In practice, ḡCaCb

and ḡCaMa
are obtained from the

manufacturer, and may be known to a pre-defined uncertainty
measure. We utilise this to terminate the equality constraints
in (11) via quadratic penalty terms, and derive the following



unconstrained optimisation problem:

min.
gCaL,gCbL

,
gMaL

fa
(
gCaL

)
+ fb

(
gCbL

)
+ fm

(
gMaL

)
+ E

where, E =
∥∥eab∥∥2Pab

+
∥∥eam∥∥2Pam

with, eab = (gCaL 	 gCbL)	 ḡCaCb
, and

eam = (gCaL 	 gMaL)	 ḡCaMa
.

(12)
The scalars ‖eab‖2Pab

= e>ab[Pab]
−1eab, and ‖eam‖2Pam

=
e>am[Pam]−1eam, are the squared Mahalanobis distances
parameterised by normal distributions N (0,Pab) and
N (0,Pam), respectively. If the covariances Pab, Pam = 0,
then the problem in Eqn. (12) satisfies the strict equality
constraints from Eqn. (11).

As explained in [14], the mutual independence of fa,
fb, and fm can be used to implement fast, hierarchical
optimisation by decoupling Eqn. (12) into sub-problems to
be solved on different CPU nodes.

To decouple Eqn. (12), we augment it with additional
variables and constraints, and define:

min.
gCaL,gCbL

,gMaL,
ĝCaL,ĝCbL

,ĝMaL

fa
(
ĝCaL

)
+ fb

(
ĝCbL

)
+ fm

(
ĝMaL

)
+ E

s.t. ĝCaL = gCaL, ĝCbL = gCbL, and
ĝMaL = gMaL.

(13)
Using penalty terms to terminate the equality constraints in

(13), we derive another unconstrained optimisation problem:

min.
gCaL,gCbL

,gMaL,
ĝCaL,ĝCbL

,ĝMaL

E(gCaL,gCbL,gMaL : ḡCaCb
, ḡMaCb

)
+ fa

(
ĝCaL

)
+
∥∥ ĝCaL 	 gCaL︸ ︷︷ ︸

eaL

∥∥2
Pi

aL

+ fb
(
ĝCbL

)
+
∥∥ ĝCbL 	 gCbL︸ ︷︷ ︸

ebL

∥∥2
Pi

bL

+ fm
(
ĝMaL

)
+
∥∥ ĝMaL 	 gMaL︸ ︷︷ ︸

emL

∥∥2
Pi

mL

(14)
In (14), the error terms eaL, ebL and emL are parameterised
by N (0,Pi

aL), N (0,Pi
bL), and N (0,Pi

mL), respectively.
The superscript i on Pi

aL, Pi
bL, and Pi

mL is an optimisation
iteration index that forces Pi

aL,P
i
bL,P

i
mL → 0 as i →

∞. This design choice emphasises feasible solutions. The
extremity of the penalty levied on infeasible solutions is
determined by Pi

aL, Pi
bL, and Pi

mL [19]. As Pi
aL, Pi

bL, and
Pi
mL decrease, the unconstrained problem in (14) accurately

replicates the constrained problem in (13).
Eqn. (14) is solved using an alternating optimisation algo-

rithm [20]. For each camera Cp, the penalty term ‖epL‖2Pi
pL

is a function of gCpL and ĝCpL. Thus, to solve (14), we use
the penalty terms ‖eaL‖2Pi

aL
, ‖ebL‖2Pi

bL
, and ‖emL‖2Pi

mL
to

link the two alternating optimisation levels.

Fig. 5: Setup: The sensors to be calibrated mounted on the platform such
that they do not have overlapping FoV. We use the stereo camera mounted
at the front of the vehicle to estimate vehicle pose using VO. The data used
for calibration was collected in Milton Keynes, UK.

1) Lower-level Optimisers: For each p = 1 . . . NC , inde-
pendent optimisers first optimise ĝCpL by solving:

min.
ĝCpL

fp
(
ĝCpL

)
+
∥∥epL(ĝCpL : gCpL

)∥∥2
Pi

pL

(15)

Eqn. (15) is one of three sub-problems decoupled from Eqn.
(14), i.e. the second, third, or fourth row of (14), based on the
camera index. We name Eqn. (15) as a lower-level optimiser.
There are NCNL lower-level optimisers, one for each lidar-
camera pair. While solving (15), gCpL is held constant.

2) Upper-level Optimiser: The problem defined in (14) is
decoupled into three lower-level optimisers, which provide
optimised solutions of ĝCaL, ĝCbL, and ĝMaL. We utilise
these lower-level solutions as known constants and define
the upper-level optimiser as:

min.
gCaL,gCbL

,
gMaL

E(gCaL,gCbL,gMaL : ḡCaCb
, ḡMaCb

)
+
∥∥eaL(gCaL : ĝCaL

)∥∥2
Pi

aL

+
∥∥ebL(gCbL : ĝCbL

)∥∥2
Pi

bL

+
∥∥emL(gCmL : ĝCmL

)∥∥2
Pi

mL

(16)

Note that (16) is also a sub-problem decoupled from Eqn.
(14). The alternating optimisation formulation is used to
solve the problem in (14) as a set of hierarchical, closed-
loop, and sequential optimisation problems. The solutions
of the lower-level optimisers drive the upper-level optimiser,
and vice versa. These equations can naturally be extended to
include any number of sensors.

V. EXPERIMENTS AND RESULTS

This section details the results of the alternating cali-
bration method coupled with diligent scene selection. The
robotic platform and its configuration is also explained.

A. Setup

The platform in Fig. (5) has a PointGrey Research (PGR)
Bumblebee XB3 stereo camera mounted in the front, facing
forward, and tilted downward by approximately 18◦. The
SICK LMS-151 2D lidar is positioned at the back of the
vehicle, such that it is tilted back by approximately 9◦.
The lidar scans are generated in a plane that is offset by



Fig. 6: ‘Ideal’ Scenes: Top row shows five scenes with highest Kj values. These are the ‘ideal’ scenes. Bottom row shows five scenes with lowest Kj .

Fig. 7: Scene Selection Evaluation: Mean squared error exhibited when
using a randomly selected subset of scenes, and when using our oppor-
tunistic scene selection method. Results are shown for each 6-DoF parameter
individually. Error bars indicate ±1σ.

approximately 9◦ with respect to the plane, orthogonal to
the direction of horizontal planar motion. The point cloud
generated using such a configuration is illustrated in Fig. 1.

The vehicle has two PGR Grasshopper monocular cameras
on the sides, one facing right (highlighted by a solid yellow
arrow in Fig. 5), and the other facing left (not shown in Fig.
5). No sensors have overlapping fields of view.

PGR provide sub-millimetre accuracy for the inter-camera
transform between the individual cameras of the stereo
unit [21]. We manually measure the inter-camera transforms
between the camera-base frame (left camera of the stereo
unit) and the individual monocular cameras, and use the
measured transform as a known parameter with a measure
of uncertainty. As explained in IV, we can exploit an inter-
camera transform provided by the manufacturer or otherwise,
as a known parameter to perform lidar-camera calibration.

For evaluating the proposed method, we obtain reference
values by using an accurate (less than 0.5mm translation
error) motion tracking system [22] to locate the plane of a
checkerboard observed by each sensor. Thus, the lidar and
each camera of a multi-camera unit can both be calibrated
very accurately with respect to the frame of the motion
tracker. In Sec. V-C, we use these values as ‘ground truth’.
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Fig. 8: Error Analysis: Box plots showing per iteration MSE distribution in
translation (left) and rotation (right). The top and bottom rows indicate the
laser-to-camera error observed for calibration estimates gCaL (Bumblebee
left) and gMaL (Grasshopper) respectively. The lower and upper bounding
boxes indicate the 25th and 75th percentiles; the red line within the box
is the median, and the dashed line indicates the extent of the extremes.

B. Scene Selection Evaluation

The scene selection procedure described in III is per-
formed once at the beginning of the calibration procedure.
The results are obtained using a 10km road dataset and
approximately 1000 individual scenes.

1) Accuracy and variance: We evaluate the scene selec-
tion method by comparing it with a random selection process.
Ground truth in this experiment is the accurately known
inter-camera calibration of the Bumblebee stereo camera.
The calibration of the laser to the left and right cameras
respectively are used to estimate this transform which we
compare to that supplied by the manufacturer.

The calibration error for translation and rotation, with
respect to ground truth, is presented in Fig. 7. The mean
squared error and variance are computed for both random
and diligent selection, repeated for increasing scene subset



a)

b)

c)

Initial Our method ‘Ground truth’

Fig. 9: Edges of a scene image superimposed on a synthetic image constructed using a projected point cloud. Row correspond to a different camera used;
a) front stereo camera, gCaL b) right camera, gMaL and c) left camera, gMbL. The columns correspond to the calibration parameters of a random initial
seed, using our proposed framework and of the ‘ground truth’, respectively.

sizes. The N diligently selected scenes are those from the
dataset that have the highest scene score Kj . We observe that
diligently selecting scenes always produces a more accurate
calibration. Moreover, Fig. 7 shows that only a few scenes are
required to substantially improve the calibration over using
a large random subset.

2) Scene scoring: In Eqn. (10), we introduced a measure
Kj which ranks scenes according to the shape of the cost
function they produce. Fig. 6 shows the top five and bottom
five according to Kj . The top five scenes exhibit features
with strong edges and high contrast while the opposite can
be said of the bottom five.

C. Calibration Performance Evaluation

Following the procedure in II-B and III, we generate point
clouds for 12 different diligently selected scenes for each
camera, each 10m long. Fig. 8 shows the results from an
optimisation, with a fixed number iterations for the lower
and upper-level optimisers. The lower-level optimiser runs
for 200 iterations, and the upper-level for 7 iterations.

The covariance PpL for camera p is initialised with
standard deviations of σt = 1m and σφ = 1.5 radians for the
translation and the rotation parameters, respectively. These
covariances are used in the quadratic penalty in Eqn. (14)

to link the upper and lower levels, and are initialised with
relatively high values to simulate low initial confidence in
the lower-level. In accordance with [19], these covariances
are updated at each iteration i such that Pi+1

pL = ω Pi
pL,

with ω ∈ (0, 1).

The performance of our proposed method, when compared
to our motion capture system’s ‘ground truth’, is presented
in Figure 8. The variance and the mean square error (MSE)
are computed by performing alternating calibration with
30 different initial seeds for the calibration parameters.
Rotational error is calculated using a rotational difference
metric [23]. The top and bottom rows correspond to laser-to-
camera calibration for the left Bumblebee camera and right
Grasshopper respectively. With each iteration, the error and
uncertainty decreases until convergence, after approximately
seven iterations. This result is representative of the other
cameras in the test system.

Fig. 9 provides a qualitative illustration of the solution
computed by the alternating method. Each image is a syn-
thetic image generated by projecting the point cloud into
the camera frame with given calibration parameters. The
pixels onto which the points fall are coloured with the laser
reflectance values. The actual camera image is processed



with an edge filter, the result of which is superimposed
over the synthetic image. The alignment of edges provides
visual aid for gauging the quality of camera-laser calibration.
The left column shows the result obtained using an initial
seed. The middle column shows the alignment using a
solution estimated by our alternating and scene selection
methods. The right column provides visual conformation of
the validity of our methods by showing the alignment given
by the ‘ground truth’ calibration. Each row depicts a scene
observed from the from stereo camera, and the right and left
monocular cameras, respectively.

VI. CONCLUSION AND FUTURE WORK

In previous work we proposed a target-less, automatic,
data-driven method for calibrating a 2D push-broom lidar to
a stereo camera, using a hierarchical, closed-loop, alternating
optimisation algorithm, distributed over two optimisation
levels. The lower-level solves camera-to-laser registration
using a Normalised Information Distance-based (NID) cost
functions, while the upper-level implements a nonlinear
least-squares pose-graph refinement step.

In this paper we present an extension to that framework,
which allows multiples cameras to be be folded into a single
calibration procedure. We show the advantages of the upper
level graph optimisation to calibrate specific sensor config-
urations with no overlapping observations of the same local
scene. As additional contribution, we designed a data-driven
approach that discerns the NID cost function generated by a
different scenes and rank individual scenes using a similarity
measure. We propose a cost descriptor that implicitly charac-
terise the intrinsic information of the gathered observations.
Our experiments show how the selected scenes can optimise
the effectiveness of the calibration results providing more
accurate estimates using a few scenes.

We provide a detailed performance analysis after running
the optimisation on real-world data collected over hundreds
of meters. Performance of the proposed method is evalu-
ated against calibration parameters obtained from a highly-
accurate commercial calibration system.

As for most real-world applications, the function to be
minimised for the proposed method is only locally convex,
and is data-dependent. Each image used for calibration may
provide a different amount of information. This can affect
the basin of convergence for the selected cost function.
Thus, learning a calibration cost function from the data, and
utilising information-based image selection and weighting
schemes are interesting problems for future research.

In [12], calibration is performed by creating a synthetic
lidar image through interpolation of lidar reflectance values.
This lidar reflectance interpolation step is computationally
expensive, and we believe, is unsuitable for extension to on-
line calibration approaches. Extending the proposed method
to an online implementation is within future scope.
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