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Abstract— Classification precision and recall have been
widely adopted by roboticists as canonical metrics to quantify
the performance of learning algorithms. This paper advocates
that for robotics applications, which often involve mission-
critical decision making, good performance according to these
standard metrics is desirable but insufficient to appropriately
characterise system performance. We introduce and motivate
the importance of a classifier’s introspective capacity: the
ability to mitigate potentially overconfident classifications by an
appropriate assessment of how qualified the system is to make
a judgement on the current test datum. We provide an intuition
as to how this introspective capacity can be achieved and
systematically investigate it in a selection of classification frame-
works commonly used in robotics: support vector machines,
LogitBoost classifiers and Gaussian Process classifiers (GPCs).
Our experiments demonstrate that for common robotics tasks
a framework such as a GPC exhibits a superior introspective
capacity while maintaining commensurate classification perfor-
mance to more popular, alternative approaches.

I. Introduction

The semantic mapping of a robot’s workspace has become
a popular line of research in recent years. A rich body of
work now exists in which semantic labels are generated
based on a variety of sensor modalities and classification
frameworks (see, for example, [1]–[7]). Often, this is done
with an implicit understanding that the application is agnostic
to the classification method used: after all, for a number of
classification frameworks the resulting precision and recall
— quantities commonly used to characterise performance —
are often commensurate across a wide variety of applications.

Contrary to this now established status-quo, we advocate
that high precision and recall are desirable but do not suffice
to fully characterise classification performance in robotics.
The dimension missed is that spawned by a robot’s ability
to take action in ambiguous situations. For example, the
robot may query a human operator or seek additional data
for disambiguation rather than committing to a potentially
incorrect class decision. Crucially, and central to this paper,
this requires the classifier output to reflect an amount of
ambiguity appropriate to a given situation. Even when hard
class assignments are avoided by optimising an expected cost
or reward, as is the case for most mission-critical decision
making, a realistic estimate of uncertainty when modelling
the state of the world is crucial; an autonomous car that
misses a single traffic light with high confidence can suffer
disastrous consequences (see, for example, Fig. 1).

We argue that a classifier which is uncertain when it
makes mistakes but certain when classification is correct,
is more desirable than a classifier which makes correct and
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Fig. 1: Uncertainty in classification output as measured using normalised
entropy for traffic light detectors based on five different classification
frameworks applied to the window shown in green. Note that all classifiers
incorrectly label this window as background (class decisions are not shown).
However, the GPC variants do so with a significant amount of uncertainty
while the others are inappropriately overconfident. Mission-critical decisions
based on overconfident output will lead to catastrophic failure while an
appropriately high amount of uncertainty when committing a mistake allows
for remedial action to be taken. Providing this more germane output is the
introspective quality we seek.

incorrect decisions with similarly high confidence. We are
therefore looking for a classifier’s capacity to mitigate its
assessment by an appropriate measure as to how ‘qualified’
it is to make a call given its own prior experience, usually
in the form of training data. Following classical decision
theory (e.g. [8]), mistakes are penalised by means of a loss
function. However, if the underlying classification framework
leads to an overconfident estimate of the class label, then
it will often be ineffective regardless of the high costs
imposed. Our work investigates this introspective capacity
in a number of classification frameworks commonly used
in robotics: support vector machines (SVMs), LogitBoosting
and Gaussian Process classifiers (GPCs). Our treatment and
findings apply to any aspect of robotics where action is
required based on inference driven by raw sensor data.
Here we choose to frame our exposition in the domain of
autonomous driving, where mission-critical decisions equate
to safety-critical decisions. To the best of our knowledge this
is the first work in robotics characterising the introspective
properties of commonly used classification frameworks.



II. RelatedWorks

For a number of years now robots have routinely generated
and consumed higher-order abstractions from raw sensor
data. Successful applications are as diverse as the detection
of ground traversability (e.g. [9]), the detection of lanes for
autonomous driving (e.g. [10]), the consideration of classifier
output to guide trajectory planning and exploration (see,
for example, [11], [12]) or the active disambiguation of
human-robot dialogue [13]. These works commonly exploit
classification output on a model-trust basis: systems are opti-
mised with respect to precision and recall and egregious mis-
classifications — including vastly over-confident marginal
distributions obtained from some classification frameworks
— are accepted as par for the course. However, the suitability
of the classification framework employed with respect to its
introspective capacity has not previously been considered
in robotics. Thus, we consider motivating, defining and
investigating introspection in a robotics context to be the
primary contribution of our work.

The concept of introspection as introduced here is closely
related to considerations in active learning, where uncertainty
estimates and model selection steps are often employed
to guide data selection and gathering for an incremental
learning algorithm. Kapoor et al. [14], for example, present
an active learning framework for object categorization using
a GPC where classifications of large uncertainty (as judged
by posterior variance) lead to a query for a ground-truth
label and are subsequently used to improve classification
performance. Joshi et al. [15] address multi-class image clas-
sification using SVMs and propose criteria based on entropy
and best-versus-second-best measures (see Section III) for
disambiguating uncertain classifications. Holub et al. [16]
propose an information-theoretic criterion that maximises
expected information gain with respect to the entire pool
of unlabeled data available. Hospedales et al. [17] discuss
optimising rare class discovery and classification using a
combination of generative and discriminative classifiers.

Our treatment of introspection is further informed by
an ongoing discussion in the machine learning community
regarding how to best account for variance in the space of
feasible classifier models when training on, essentially, an
incomplete set of data. For example, Tong and Koller [18]
present an incremental algorithm for text classification using
SVMs and the notion of a version space, the set of consistent
hyperplanes separating the data in a feature space induced
by the kernel function. Zhang et al. [19] introduce a max-
margin classifier achieving better generalisation to unseen
test data given a limited training corpus. Here, distinctiveness
of training instances is assessed using the local classification
uncertainty. A global classifier then incorporates these un-
certainties as margin constraints, yielding a classifier that
places less confusing instances farther away from the global
decision boundary. We share the intuition that accounting for
variance in version space when selecting a model leads to
an increased introspective capacity. As a secondary contri-
bution, therefore, our results serve to further corroborate this
intuition.

III. Introspection and Uncertainty
Introspection concerns not the final class decision but

rather the confidence with which this decision is made. The
concept is motivated by the desire to take appropriate action
when a classifier indicates high uncertainty. Our approach
to introspection is grounded in the fact that the often cited
assumption of independent and identically distributed (iid)
training and test data is routinely violated in robotics: in
the limit of continuous operation in the real world, one-shot
classifier training is unlikely to be performed on a complete
(or even fully representative) set of data.

Let a classifier map an input x ∈ �d to one of a set of
classes C = {C1, . . . ,C|C|} via an associated label y ∈ C.
Prior to training, domain specific knowledge is often used to
constrain the family of classification models employed (for
example in the form of a kernel, a covariance function or
a type of base classifier). Classifier training then involves
learning a set of (hyper-) parameters given a training dataset
{X,Y}, where X = {x1, . . . , x|X|} denotes the set of feature
vectors and Y denotes the set of corresponding class labels.
The training data implicitly give rise to a probability distri-
bution over the set of all possible models within the chosen
family, M, such that

{X,Y} → p(m | X,Y) , m ∈ M. (1)

With a slight abuse of notation, m here denotes any member
of the family of possible models, M. In reality it is a
function of the datum evaluated. In the following we make
this relationship explicit by conditioning on both a model (or
family of models) as well as on a test datum x∗. Typically,
training leads to the selection of a single model, m̃ from M
such that a prediction y∗ for a new, unseen feature vector x∗
is obtained by approximating

p(y∗ | X,Y, x∗) ≈ p(y∗ | m̃, x∗) , m̃ ∈ M. (2)

This is illustrated in Figure 2(a). Common examples of this
type of classification framework include SVMs and Boosting
classifiers, where an optimisation is performed to select the
best model given the training data (see Section IV). The
iid assumption here is inherent since it is assumed that m̃
remains the best model for all predictions of unseen data.
Breaking this assumption therefore often renders the chosen
model suboptimal.

An alternative to the single model approach are classifi-
cation frameworks which take into account the entire set of
possible models in the specified family, such that

p(y∗ | X,Y, x∗) ≈ p(y∗ | M, x∗). (3)

This case is illustrated in Figure 2(b). Here the shading
indicates the distribution p(m | X,Y) with darker shades
indicating increased probability. To aid intuition, predictions
of four randomly selected members ofM are also illustrated.
Final predictions are made by taking into account opinions
from all members of M, often via the computation of an
expectation such as for a GPC (see Section IV). Crucially,
when considering an expectation over all ofM, the increased
variance in feasible (and therefore likely) models at a dis-
tance from the training data leads to a moderation of the
class predictions. This is the introspective quality we seek.
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Fig. 2: An illustration of the two types of classification frameworks considered: (a) during training a single model is selected to classify an unknown
datum x∗ some way removed from the training data; (b) training leads to a distribution over models which is considered entirely to arrive at the final
prediction. This illustration is for the family of linear models (indicated by solid (a) and dashed (b) lines). Each predictor is further annotated with its
individual prediction. The overall predictive distribution is shown in the bottom right of each subplot. The shading in part (b) indicates the probability
weights associated with individual models. Darker regions contain more weight. Note that the overall predictive distribution in (a) stems from the single
model used and is, in this case, inappropriately confident. In part (b), however, the overall predictive distribution is moderated by computing the expectation
over all models. This gives rise to a much more appropriate uncertainty estimate — the introspective quality we seek. (Best viewed in colour.)

A. Quantifying Introspection

In order to characterise the introspective capacity of a clas-
sification framework a transferable measure of the inherent
uncertainty in the classification output is required. For this
purpose, we use an information-theoretic quantity known as
normalised entropy, HN , defined as

HN = −
∑
Ci∈C

p(y = Ci | x) log|C|
[
p(y = Ci | x)

]
. (4)

This is equivalent to the Shannon entropy measure nor-
malised by its maximum, which is the entropy of the |C|-
dimensional uniform distribution, log(|C|). The result is a
measure ranging between 0 and 1 where a higher value
indicates greater uncertainty in the classifier’s belief.

An alternative uncertainty measure proposed in the active
learning literature is the best-versus-second-best (BvSB)
heuristic [15] calculated as the difference between the largest
and the second largest class likelihood estimates. This mea-
sure attempts to characterise the reliability of the maximum
likelihood estimate rather than encoding the shape of the full
distribution over class labels. The BvSB and normalised en-
tropy measures are closely related in the binary-classification
setting which is the case in this paper. We use normalised
entropy throughout the remainder of this work due to its
appealing information-theoretic interpretation.

IV. Classification Frameworks

We now present a brief overview of the specific classifica-
tion frameworks considered in this work: SVMs, LogitBoost
classifiers and GPCs. We focus on properties pertinent to
introspection. Specifically, we describe the mechanism by
which parameters are learned and how probabilistic output
is obtained. For simplicity, but without loss of generality, this
work considers predominantly binary classification such that
C = {C1,C2}. For consistency we adhere to notation com-
monly found in the literature where a discriminant function

is often denoted as f (·). We note that this is equivalent to a
particular model m as described in the previous section.

A. Support Vector Classification

SVM classification is well established in robotics so that
we provide here only an overview1. SVMs are based on a
linear discriminant framework which aims to maximise the
margin between two classes. The model parameters are found
by solving a convex optimisation problem, thereby guaran-
teeing the final classifier to be the best feasible discriminant
given the training data. Once training is complete, predictions
on future observations are made based on the signed distance
of the observed feature vector from the optimal hyperplane,
such that

f (x∗) =

N∑
i=1

αiyik(xi, x∗) + b, (5)

where N is the size of the training set, αi refers to a Lagrange
multiplier associated with datum i, b denotes a bias parameter
and k(xi, x j) denotes the kernel function. Both αi and b are
obtained by training, and αi is then non-zero only for support
vectors xi. The kernel function amounts to a scalar product
between two data, which have been transformed from d-
dimensional feature space into some higher dimensional
space. The nature of this mapping between spaces is inherent
in the choice of kernel and need not be specified explicitly
(the kernel trick). The regularization and kernel parameters
are learnt using cross-validation. We discuss our choices of
kernel functions in Section IV-D.

In its original form, the SVM classifier output is an
uncalibrated real value. A common means of obtaining
a probabilistic interpretation is Platt’s method [21]. Here,
using a hold-out set not used for classifier training, a para-
metric sigmoid model is fit directly to the class posterior

1For a detailed account the reader is referred to, for example, [20].



p(y∗ = C1 | f (x∗)), such that

p(y∗ = C1 | f (x∗)) =
1

1 + exp(a f (x∗) + b)
. (6)

The sigmoid parameters a and b are chosen via cross-
validation using a model-trust optimisation procedure. Note
that class likelihoods are derived here using only a single
estimate of the discriminative boundary obtained from the
classifier training procedure. No other feasible solutions
are considered. Hence, the predictive variance of the dis-
criminant f (x) is not taken into account while determining
probabilistic output [22]. Further, no guarantees exist that the
optimisation itself is well-behaved2.

B. LogitBoosting Classifiers

Boosting is a widely used classification framework which
involves training an ensemble of weak learners in sequence.
The error function used to train a particular weak learner
depends on the performance of the previous models [8].
Each weak learner, h(x) is trained using a weighted form
of the dataset in which the data weights depend on the
performance of the previous classifiers. Predictions from a
boosted classifier are obtained using a weighted combination
of the individual weak learner outputs such that

sgn( f (x∗)) = sgn

 M∑
i=1

wihi(x∗)
 , (7)

where M is the number of weak learners used.
LogitBoost [24] is a popular choice for a boosting-based

classifier as it directly outputs class probability estimates.
Weak learners are often chosen to be decision trees and
training is conducted by fitting additive logistic regression
models by stage-wise optimisation (using Newton steps) of
the Bernoulli log-likelihood. The algorithm works in the
logistic framework and yields a predictor function f (x) learnt
from iterative hypothesis training. Cross-validation is used
to set hyper-parameters like the learning rate, tree depth,
and the number of boosting rounds. The class-conditional
probabilities are obtained from the predictor function as

p(y∗ = C1 | x∗) =
exp( f (x∗))

exp( f (x∗)) + exp(− f (x∗))
. (8)

The procedure possesses asymptotic optimality as a maxi-
mum likelihood predictor [24], [25]. However, the method
of converting the output of the predictor function to class-
conditional probabilities is not fully probabilistic and does
not account for variance in the underlying predictor func-
tion3.

C. Gaussian Process Classification

Binary classification using a Gaussian Process (GP) [22],
[26] is formulated by first introducing a latent function
f (x) and then applying a logistic function σ to obtain
the prediction p(y∗ = C1 | x∗) = σ( f (x∗)). A GP prior

2Throughout this work we use LIBSVM [23] for SVM training, calibra-
tion and testing.

3Throughout this work we use the Matlab implementation of LogitBoost
for classifier training and testing.

is placed on the latent function f (x) ∼ GP(µ(x), k(x, x′ ))
characterized by a mean function µ(x) and a covariance
(or kernel) function k(x, x′ ). GPC training establishes values
for the hyper-parameters specifying the kernel function k by
maximising the log marginal likelihood of the training data.

Probabilistic predictions for a test point are obtained in
two steps. First, the distribution over the latent variable
corresponding to the test input is obtained using Equation (9).
Here, p( f | X,Y) = p(Y | f )p( f | X)/p(Y | X) is the
posterior distribution over latent variables.

p( f∗ | X,Y, x∗) =

∫
p( f∗ | X, x∗, f )p( f | X,Y)d f . (9)

This is followed by marginalising over the latent f∗ to yield
the class likelihood p(y∗=C1 | X,Y, x∗) as

p(y∗ = C1 | X,Y, x∗) =

∫
σ( f∗)p( f∗ | X,Y, x∗)d f∗. (10)

Exact inference is analytically intractable due to the non-
Gaussian logistic likelihood function. Instead we leverage
expectation propagation (EP) [27], a method widely used
for this purpose.

The GPC framework offers two key benefits over the other
approaches discussed here [22]. Firstly, the classification
output has a clear probabilistic interpretation as it directly
results in the class likelihood. In contrast, neither the SVM
nor the Boosting framework provide inherently probabilistic
output but instead estimate a suitable calibration. Secondly,
and crucially, the GP formulation addresses uncertainty or
predictive variance in the latent function f (x) via marginali-
sation (or averaging) over all models induced by the training
set resulting in the estimate p(y∗=C1 | X,Y, x∗) from Equa-
tion (10)4. Again this is in contrast to the SVM or Boosting
estimate p(y = Ci | f̂ , x∗) that rely on a single discriminant
estimate f̂ : X → Y learnt via minimisation. In the context
of introspection, the ability to account for predictive variance
is a key advantage of generative classification approaches5.

D. Kernel Types
Evaluation of the discriminant function for an SVM and

the covariance matrix for GPC inference both require the
specification of a kernel function, k(·, ·). A rich body of
literature exists on different choices of kernels for both
frameworks. However, since our focus here is on a like-
for-like comparison of different classification frameworks
we choose two representative kernels rather than performing
exhaustive model selection to optimise performance for a
particular application. Firstly, as an example of the simplest
kernel function available, we consider the linear kernel
defined as

kLIN(xi, x j) = xT
i x j + c, (11)

where c is a constant real number. The linear kernel is an
apt choice where a linear separation of the data in feature
space leads to adequate performance or where computational

4This process also gives rise to the well known property of increased
variance while far away from the data in GP regression.

5Throughout this work we use the GPML toolbox [28] for GPC training
and testing.



efficiency is of the essence. Often, however, a more sophis-
ticated, non-linear kernel is required. In this category we
use the squared exponential (SE) function as a canonical
representative. The SE kernel with length scale parameter l
is defined as

kS E(xi, x j) = exp
(
−

1

2l2
||xi − x j||

2
)
. (12)

In the context of an SVM, the SE function is more
commonly known as a radial basis function (RBF). In the
following we will adhere to convention and refer to SE GPCs
and RBF SVMs.

V. Experimental Results

Our experiments investigate the introspective capacity of
the classifiers introduced in Section IV in an autonomous
driving setting. Specifically, we focus on the classification of
road signs and the detection of traffic lights. In investigating
both classification and detection we aim to address the full
spectrum of applications commonly encountered in robotics.
The two are distinct in that classification addresses the case
where a decision is made between two, well-defined classes
(e.g. two types of traffic signs) and investigates classifier
performance as a third, previously unseen class is presented.
The detection case is arguably the more common one in
semantic mapping where a single class is separated from
a broad (in terms of intra-class variation) background class.
Here, the concept of a previously unseen class does not exist
but the inherent assumption is that the data representing the
background class are sufficiently representative to capture
any non-class object likely to be encountered. In practice,
this is often not the case, leading to a significant number of
misclassifications. While it could be argued that this problem
is ameliorated somewhat by expanding the dataset used for
training, we propose that the complexity of the workspaces
encountered during persistent, long-term autonomy will keep
perplexing even the most rigorously trained classifier.

A rich body of work on the detection and classification
of road signs and traffic lights has established a successful
track record of template-based features for this purpose.
Specifically, we leverage the approach proposed by Tor-
ralba et al. [29] in which a dictionary of partial templates
is constructed, against which test instances are matched. A
single feature consists of an image patch (ranging in size
from 8×8 to 14×14 pixels) and its location within the object
as indicated by a binary mask (32×32 pixels). For any given
test instance, the normalised cross-correlation is computed
for each feature in the dictionary. Therefore, per instance (or
window, in the detection case) a feature vector of length d
is obtained, where d is the size of the dictionary. We found
empirically that d > 200 leads to negligible performance
increase in classification. Throughout our experiments we
therefore set d = 200.

A. Introspection in Classification

This section investigates classification output when a third,
previously unseen class is presented to the classifier. As
examples of classes typically encountered in autonomous
driving applications we use a subset of the German Traffic

roadworks ahead right ahead stop keep left
(1500) (688) (780) (298)

lorries prohibited speed limit yield
(420) (1980) (2159)

TABLE I: The seven classes of the German Traffic Sign Recognition
Benchmark dataset considered in our work. The numbers in brackets indicate
the number of data available per class.

Classifier Precision Recall F1

SE GPC 1.000 0.990 0.995
RBF SVM 1.000 0.995 0.997
Linear GPC 1.000 0.990 0.995
Linear SVM 1.000 0.990 0.995
LogitBoost 1.000 0.965 0.982

TABLE II: Classification performance when separating stop sign from the
lorries prohibited signs. Note that different class combinations were found
to yield classifiers of similar quality.

Sign Benchmark (GTSRB) dataset [30], which comprises
over 50, 000 loosely-cropped images of 42 classes of road
signs, with associated bounding boxes and class labels. From
this dataset we specifically focus on the seven classes shown
in Table I. We arbitrarily select two classes for training: stop
and lorries prohibited. To investigate the efficacy of the fea-
tures used and training procedures employed, classifiers were
trained separating these two classes using a balanced training
set of 400 data (200 per class) and applying a canonical
training procedure for each classifier type, including five-fold
cross-validation where appropriate. Classifier performance
was evaluated using standard metrics on a hold-out set of
another 400 class instances (200 of each class) of the same
two classes. The results are shown in Table II. Classification
performance is commensurate across all classifiers. The cor-
responding precision-recall curve confirms the near-perfect
separation of the classes and has been omitted here as it is
otherwise uninformative. The classifiers are next retrained
using the full 800 training data (400 per class) and the same
canonical training procedures. They are then applied to 500
instances of the previously unseen class roadworks ahead.
The resulting normalised entropy histograms are shown in
Figure 3. The mean normalised entropies for the GPC-based
classifiers are significantly higher than those of the other
classification frameworks, indicating that the the GPC-based
classifiers exhibit greater uncertainty in their judgement.
Conversely, the RBF SVM and the LogitBoost classifier are
extremely confident in their classifications with a very narrow
distribution around a relatively low value of normalised
entropy. This was an effect consistently observed throughout
our experiments, which we attribute to the relatively gradual
decay of the estimated class posterior probabilities through
feature space often encountered far away from the decision
boundary. Features from an unseen class which are located
in feature space at a distance from the decision boundary
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Fig. 3: Normalised entropy histograms of the marginal probabilities for five classifiers trained on the road sign classes stop and lorries prohibited and
tested on 500 instances of the unseen class roadworks ahead. Higher normalised entropy implies more uncertainty in classifier output. Note that the mean
normalised entropy for the SE GPC is higher than that of the others.

Test Class Classifier Normalised Entropy
µ± std. err. σ± std. err.

SE GPC 0.504 ± 1.92E-03 0.110 ± 9.35E-05
RBF SVM 0.313 ± 1.33E-04 0.012 ± 2.12E-06
Lin GPC 0.245 ± 9.34E-04 0.173 ± 9.19E-05
Lin SVM 0.106 ± 4.77E-04 0.107 ± 2.51E-04
Logit 0.015 ± 2.72E-05 0.009 ± 4.11E-05
SE GPC 0.487 ± 1.70E-03 0.139 ± 7.67E-05
RBF SVM 0.310 ± 1.13E-04 0.017 ± 3.72E-06
Lin GPC 0.286 ± 8.09E-04 0.179 ± 6.24E-05
Lin SVM 0.076 ± 3.72E-04 0.097 ± 2.43E-04
Logit 0.012 ± 1.79E-05 0.007 ± 1.27E-05
SE GPC 0.723 ± 4.91E-04 0.186 ± 1.59E-04
RBF SVM 0.306 ± 1.03E-04 0.095 ± 7.96E-05
Lin GPC 0.680 ± 4.75E-04 0.235 ± 1.11E-04
Lin SVM 0.634 ± 7.29E-04 0.267 ± 4.28E-05
Logit 0.021 ± 1.07E-04 0.031 ± 7.10E-04
SE GPC 0.804 ± 6.08E-04 0.163 ± 1.72E-04
RBF SVM 0.335 ± 1.43E-04 0.050 ± 1.26E-05
Lin GPC 0.811 ± 4.39E-04 0.184 ± 1.66E-04
Lin SVM 0.642 ± 3.24E-04 0.294 ± 9.19E-05
Logit 0.017 ± 3.62E-05 0.018 ± 2.06E-04
SE GPC 0.259 ± 2.36E-03 0.116 ± 1.37E-04
RBF SVM 0.255 ± 1.28E-04 0.027 ± 5.26E-06
Lin GPC 0.155 ± 9.27E-04 0.140 ± 2.61E-04
Lin SVM 0.043 ± 7.82E-05 0.059 ± 1.26E-04
Logit 0.007 ± 1.29E-07 0.007 ± 2.31E-05

TABLE III: Mean and standard deviation normalised entropies (including
standard errors) from ten iterations of classifier training and testing, each
with a randomly created dictionary and both training and test datasets
resampled. Results are presented for classifiers trained on the road sign
classes stop and lorries prohibited and tested on five different unseen classes
as shown.

therefore only span a very narrow range of estimated class
posterior probabilities.

In order to mitigate any influences of the specific feature
set used and the specific training and test data selected we
repeated the above experiment across a number of random
dictionaries, data samples and unseen classes. Specifically,
for each of five different unseen classes, we perform ten
iterations of classifier training and testing with a random
dictionary and training and test datasets resampled for each
run. The results, presented in Table III, are consistent with
those in Figure 3 in that the GPCs tend to be more uncer-
tain while SVM and LogitBoost are more confident with
an often significantly narrower distribution of normalised
entropy values. The results in Table III indicate that the
gap in uncertainty between the different frameworks is more
pronounced for some unseen classes than for others. We
attribute this to the varying degree of similarity in feature
space between the unseen class and the classes in the training
set. A more in-depth analysis of this phenomenon remains
future work.

Classifier Precision Recall F1

SE GPC 0.976 0.909 0.941
RBF SVM 0.982 0.931 0.956
Linear GPC 0.970 0.912 0.940
Linear SVM 0.979 0.929 0.953
LogitBoost 0.963 0.928 0.945

TABLE IV: Performance on a holdout set of 2000 instances of classifiers
trained on data from the TLR data set.

B. Introspection in Detection

We investigate the same classification frameworks as be-
fore on the task of traffic light detection. To this end we use
the Traffic Lights Recognition (TLR) dataset [31], which is
a sequence of colour images taken by a monocular camera
from a car driving through central Paris. The TLR dataset
comprises of just over 11,000 frames, where most of the
traffic lights have been labeled with bounding boxes and
further metadata such as the status of the signal or whether
a particular label is ambiguous (e.g. the image suffers from
motion blur, the scale is inappropriate or a traffic light is
facing the wrong way). A few traffic lights have been omitted
altogether. As suggested by the authors of [31], we exclude
from our experiments any labels of class ambiguous or
yellow signal and any instances which are partially occluded.
We also remove any section of the sequence where the car
is stationary and the lights are not changing. We split the
dataset into two parts (at frame 7, 200 of 11, 178), with an
approximately equal number of remaining labels in each
part and with no physical traffic lights in common. Positive
data are extracted as labeled. Negative background data are
extracted by sampling patches of random size and position
from scenes in the dataset while ensuring that the patches do
not overlap with positive instances. The data are then split
into training and test sets and classifiers are trained as before.

Again, we first verify the efficacy of the features selected
and the training procedures employed. Table IV shows the
classification performance for classifiers trained on 1,000
examples and evaluated on a hold-out set of 2,000 data. For
completeness, Figure 4 shows the corresponding precision-
recall curve. As before, classification performance accord-
ing to conventional metrics is commensurate across all
frameworks. In Figure 5, however, we demonstrate how the
lack of introspection can impact classification performance
when accept/reject decisions are guided by classification
confidence. Specifically, we show the cumulative effect of
accepting classifications below a given uncertainty threshold.
First we note that when classifications are accepted at any
level of uncertainty (i.e. up to and including unity normalised
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(d)
Fig. 5: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives) against normalised entropy.
The classifiers have been trained on 500 traffic lights against 500 background patches, and tested on 1,000 instances of each. Note that lower normalised
entropy implies more certainty in classification. A more introspective classifier is one that exhibits higher uncertainty (as witnessed by larger normalised
entropy in its output) when processing difficult instances. Consequently, class decisions on output above a given normalised entropy threshold are deferred
since the output is deemed ambiguous. This is desirable since a single bad decision can have disastrous consequences. (Best viewed in colour.)
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Fig. 4: Precision-recall graph for traffic light detection. Classifier perfor-
mance is commensurate for all frameworks. (Best viewed in colour.)

entropy) all classification frameworks are commensurate
in terms of true positives and true negatives (top row of
Figure 5). This further corroborates the accuracy figures in
Table IV. However, true positive and negative classifications
occur generally at higher certainty (i.e. as normalised entropy
tends to zero) for SVMs and LogitBoost classifiers than for
the GPC variants. The latter are overall less certain about a
significant number of correct classifications. The bottom row
of Figure 5 indicates that SVMs and LogitBoost classifiers
are also significantly more confident when misclassifying
data (an example of this is also shown in Fig. 1). Significant
numbers of mistakes are made at relatively low normalised
entropy thresholds. The GPC variants, in contrast, accu-

mulate comparable numbers of classification errors only at
higher normalised entropy thresholds. The price paid for this
more realistic assessment of the classification output is a
reduction in correct classifications above the normalised en-
tropy threshold. Note that this does not mean that subsequent
samples are misclassified. It only implies that some other
remedial action might be taken — for example obtaining
label confirmation from a human or gathering otherwise
additional data to aid disambiguation.

VI. Conclusions

This work demonstrates how performance metrics tra-
ditionally used in machine learning for classifier training
and evaluation may be insufficient to characterise system
performance in a robotics context, where a single misjudge-
ment can have disastrous consequences. To remedy this
shortcoming, we propose the concept of introspection: the
ability to mitigate potentially overconfident classifications by
a realistic assessment of predictive variance. Our experimen-
tal results imply that, despite commensurate performance
as measured by more conventional metrics, GPCs possess
a more pronounced introspective capacity than other clas-
sification frameworks commonly employed in robotics. We
attribute this to their accounting, at test time, for predictive
variance over the space of feasible classification models. This
is in contrast to other commonly employed classification
frameworks which often only consider a one-shot (ML or



MAP) solution. GPCs appear therefore better suited than
the other frameworks investigated to applications where a
realistic assessment of classification accuracy is required.
Crucially, this includes many decision-making problems
commonly encountered in robotics.

We have not, at this stage, considered the computational
complexity of the approaches presented. Though GPCs in
their basic form are notoriously expensive, more elaborate
schemes exist which reduce the computational burden re-
quired for GPC inference. Our future work will investigate a
variety of these schemes for suitability for real-time perfor-
mance in autonomous driving tasks. Our work also holds
implications for robotic active learning and exploration,
which opens up additional avenues of research we intend
to explore.
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