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Abstract— We present a framework for integrating two layers
of map which are often required for fully automated operation:
metric and semantic. Metric maps are likely to improve with
subsequent visitations to the same place, while semantic maps
can comprise both permanent and fluctuating features of the
environment. However, it is not clear from the state of the art
how to update the semantic layer as the metric map evolves.

The strengths of our method are threefold: the framework
allows for the unsupervised evolution of both maps as the
environment is revisited by the robot; it uses vision-only sensors,
making it appropriate for production cars; and the human
labelling effort is minimised as far as possible while maintaining
high fidelity. We evaluate this on two different car parks with
a fully automated car, performing repeated automated parking
manoeuvres to demonstrate the robustness of the system.

I. Introduction

The environments in which our robots operate are often

very complex, sharing aspects which are continually evolving

along with some much more permanent features. Alongside

these varying scales of change, certain tasks required for

autonomous operation can be carried out in an unsupervised

manner, making them cheap, while others require significant

human involvement due to either the difficulty of the task or

the need for accuracy guarantees. In this paper we propose

a framework which strives for the best of both worlds: we

manage the reprocessing of tasks based on how often they

require updating, and we streamline tasks which require hu-

man involvement while maintaining the accuracies required

for safety-critical automated driving.

The particular tasks we consider are those of creating

metric maps of our robot’s environment, required for path

planning, and creating semantic maps which are crucial for

the robot’s ability to reason about and interact appropriately

with their surroundings. An example of such a map is shown

in Fig. 1.

We envisage a system by which our metric and semantic

maps improve as our robots revisit previously-explored areas,

as shown in Fig. 2. In this work we employ vision-only sen-

sors for both mapping and localisation, and so the accuracy

of any metric map relies upon the information gathered from

the cameras during any particular run. However, the data

collected during a revisit can be used to refine the metric

map from the previous visit, and that in turn can be used to

refine aspects of the semantics.

Fig. 1: The semantic information placed relative to the metric map. Shown
are the driving lanes in green, and the parking spaces in blue.

In safety-critical situations such as the operation where

automated vehicles and humans coexist, semantic maps are

often created (or at least maintained) by hand to ensure

their high quality. Here we distinguish between two types of

semantic labels: static semantics which represent more per-

manent features of the environment such as fixed obstacles

or points of interaction, and dynamic semantics such as the

characteristics of transient objects within an environment. By

definition, static semantics are unlikely to change between

revisits, and as such represent a significant but necessary

cost in terms of human labelling effort, which ideally should

not need repeating upon subsequent visits. We use dynamic

maps to estimate the likelihood of dynamic obstacles being in

any particular location of the robot’s environment, in our case

pedestrians, which allows the robot to drive at an appropriate

speed. Dynamic semantics can be recomputed at each revisit

in an unsupervised manner without requiring further human

labelling effort.

Once initial semantic and metric maps have been created

for a place, subsequent revisits to that place should allow

the improvement of those maps without further labelling

taking place. More loop closures improve the metric map,

and those changes should propagate through to the positions

of the semantic labels. We do this by performing the initial

labelling in a frame of reference local to the sensor in which

the object is visible. This is such that when the metric map

is recomputed, the new position of the semantic label is

an unmodified local transformation of the newly computed

vehicle frame. Fig. 3 demonstrates this principle.

As the promise of robots for the general public is increas-
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Fig. 2: The cycle of improvement for both metric and semantic maps as a
vehicle autonomously revisits a place.
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Fig. 3: While the vehicle positions [v1, v2, v3] may be recomputed between
(a) the initial visit and (b) the revisit, the position of the semantic object s
relative to v2 remains unchanged. This allows us to update the metric map
without having to recreate the semantic labels. FO represents the global
origin coordinate frame, and Ta,b represents a 6 d.o.f. transformation from
b to a.

ing, parking is a clear early target for widespread automation.

The ubiquity of the requirement to park vehicles in car

parks motivates the V-Charge project, whose goal is to

provide a repeatable, robust, automated valet-parking system

which requires neither expensive sensors nor specialised

infrastructure in the car parks themselves.

The main contributions of this paper are:

• The implementation and evaluation of a life-long metric

and semantic mapping system on a fully automated car,

• The proposal of a lifelong mapping cycle that seam-

lessly integrates metric map updates with both static

and dynamic semantic labels,

• An algorithm for automatically generating road network

graphs, and

• The use of introspective active learning for both parking

space detection and pedestrian detection.

In Sec. IV we explain the localisation and mapping

pipeline. In Sec. V we describe the process of creating the

static maps and updating the dynamic maps. In Sec. VI

we evaluate these systems in a real car park, showing the

behaviour following revisits.

II. RelatedWorks

The field of automated driving has a rich history, gradually

making its way into production cars. This push to make

robotics relevant for the wider public has led to significant

progress in terms of localisation robustness using vision-only

systems [1], [2].

Semantic mapping is also a rapidly developing field, but

creating reliable maps with vision-only is difficult. Paper [3]

fuses laser and camera data to map urban environments. The

labelling of parking lots in particular has been approached

using overhead images from online photographic reposito-

ries (such as Google Maps) [4], but this method makes

assumptions about the layouts of parking lots. We assume

no particular structure, and label in synthetic overhead maps

made by projecting the camera views into simulated ground

surfaces, which is useful for mapping underground car parks

where satellite imagery is not available. The authors of [5]

use a generative model of the geometry of urban scenes to

label the lanes and a dynamic map. We overlay this style of

map with an extra layer of semantics related to parking and

the likely motion of pedestrians.

The matter of storing and subsequently making use of se-

mantic labels was tackled during the Urban Challenge, with

the road network being hand-labelled and then distributed to

the competitors in the RNDF format [6]. The competitors

then had to perform automated parking manoeuvres based

on these maps [7].

In this work we leverage the adaptability of relative

maps. Hybrid topological-metric maps have emerged to be a

dominant representation in the field of autonomous driving:

examples include sub-mapping [8], to manifold mapping [9],

to completely relative representations [10].

We draw from all these influences, but present a ro-

bust and well-integrated end-to-end system which generates

constantly-improving, rich semantic information and uses it

to perform repeated parking manoeuvres with high accuracy.

III. The Autonomous Car

For the V-Charge project, two VW Golf series vehicles

have been modified for drive-by-wire capability, with an

integrated camera system, IMU, and computer systems.

The test vehicle is equipped with four 180◦ field-of-view

fish-eye cameras, one facing each cardinal direction of the

car (see Fig. 4). Images are recorded simultaneously at

12.5Hz in gray-scale format with a resolution of 1280 x

960. Subsequent downsampling to half the original size and

extraction of BRISK features allows for fast, CPU-based

image processing. In addition, wheel odometry running at

50Hz is used as a motion sensor yielding constraints between

adjacent image acquisition poses. The intrinsic and extrinsic

parameters of the camera system are calibrated using the

CamOdoCal library [11].
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Fig. 4: The configuration of the four 180◦ field-of-view fish-eye cameras
used for mapping, localisation, and dynamic object detection.

IV. MetricMapping

In this section, we describe the metric mapping and local-

isation system which is required for the semantic labelling

pipeline, and for autonomous navigation around the car park.

For more detail the reader is referred to [12] and [13].

A. Map Representation

Let F
−→A

denote a coordinate frame A, and let further Ap

denote a point in space expressed with respect to F
−→A

. In

addition to that, let TA,B denote a 6DoF transformation,

relating two coordinate frames such that Ap = TA,B · Bp.

We further define F
−→O

to be an arbitrary, spatially fixed

global origin frame. Our map used for localisation can then

be thought of as a collection of landmarks Mip expressed

with respect to individual map frames F
−→Mi

as well as a set

of transformations TO,Mi associated with each map frame.

Landmarks here refer to 3D points in Euclidean space,

associated with a BRISK feature descriptor. As will become

clear later, these map frames are fixed in space at all times

and lie along the car path of the initial dataset used to

form the base-map. The landmarks are originally observed

and inferred from the cameras mounted on the vehicle,

for which the exact car poses with respect to the global

coordinate frame for every captured image is inherently

unknown and subject to change as more information becomes

available in subsequent mapping sessions. Therefore, the

map also contains transformations between vehicle poses and

associated mapping frames. During the course of the map

refinement, both the location of the landmarks as well as the

vehicle poses are updated, whereas the mapping frames stay

stationary.

B. The Base Map

Since the four cameras record images simultaneously,

we will refer to an image frame as the collection of all

four images recorded at that time. In a first stage, the

initial image stream is subsampled such that consecutive

image frames are evenly spaced along the car trajectory,

separated by a 20cm baseline. A vehicle pose is associated

with each of the remaining image frames, forming a pose-

graph. Subsequently, BRISK features are extracted for each

camera image, followed by a loop-closing engine looking for

matching images, which then form relative transformation

constraints based on a RANSAC estimate of the camera

poses of the images involved. Together with the constraints

between successive car poses from integrated wheel odom-

etry, a pose-graph relaxation problem is formulated whose

solution consists of a geometrically consistent graph of car

poses. In the next stage, the BRISK features are tracked along

subsequent images - individually and independently for each

camera. The guess of the car poses together with the camera

extrinsic and intrinsic calibration allow to infer the landmark

positions in the global frame for all feature tracks. Finally, a

full bundle adjustment optimisation problem is solved, which

involves all landmark observations (reprojection constraints

between the inferred 3D landmark position and the observed

2D feature in the images) and all wheel odometry constraints

between successive car poses. This yields a refined estimate

of the car poses along the pose-graph and all landmarks

observed in the base-map. To complete the initial base-map,

a mapping frame F
−→Mi

is created for each car pose.

C. Localisation and Multi-Session Mapping

With the base-map described in the previous section, the

car is able to navigate autonomously within the mapped area.

This is achieved by repeatedly estimating the transformation

TMi,v between the car and a nearby map frame. Let T̂Mi,v

be a guess of the car’s current pose based on a previous

localisation estimate and wheel odometry. We now retrieve

the landmarks from the map in the vicinity of our guess and

project them into the camera frames, allowing to match them

against the extracted image features by taking both the image

space and descriptor distance into account when forming

the set of 2D-3D associations. From these associations,

constraints on the vehicle pose are formed in the context of

a non-linear least squares optimisation problem. The vehicle

pose is estimated by minimising the reprojection errors based

on these associations. This estimate is then used in the

proximate iteration as a new starting point.

Since between recording the initial dataset for the base-

map and a later attempt to localise in it, the environment

may change, not all image features will be successfully

matched against landmarks from the base-map during lo-

calisation. These unmatched features can be used in an

offline processing step to track new landmarks which are

then added to the base-map, enriching the latter with new

information representing the change in the environment. For

the reasons mentioned above, we also add the new vehicle

poses to the map. Both the new landmarks as well as

the new vehicle poses are associated with a nearby map

frame. This associations, corresponding to transformations

between the new vehicle poses and the fix map frames from

the base-map, stem from the localisation estimate based on

successfully matching a large enough subset of features in

the current image frames to landmarks already present in

the map. Consequently, the image frames from the dataset

used to localise against the map (subsequently referred to as

the “localisation dataset”) contain associations both between

landmarks from the base-map as well as the new landmarks

and hence allow formulating constraints between the vehicle

poses from the base-map and the ones from the localisation

dataset. This fact is exploited in a full bundle adjustment

step. The resulting map is referred to as a multi-session

map now consisting of two datasets. The procedure can

naturally be extended to an arbitrary number of datasets.

This multi-session mapping allows the map to be refined as

more datasets are processed resulting in more accurate map

geometry and increased localisation performance. Please note



that the multi-session mapping described in this form does

not explicitly deal with landmarks that disappear or shift

their position in changing environments over longer time

spans. Outdated landmarks remain in the map, but will fail to

match against current image observations. This is acceptable

as long as a large enough set of valid landmarks can be

matched against current images at all times. Also note that,

as described above, image features failing to match against

the map are tracked over subsequent images and form new

landmarks that may account for an outdated landmark that

shifted its position or changed its appearance. Techniques to

curate maps and filter out outdated or unhelpful are studied

in detail in [13].

V. SemanticMapping

In most parking environments there is a wealth of perma-

nent semantic information which can, if correctly leveraged,

make a complex manoeuvre such as driving along a lane

and parking a much more straightforward task. Typically

the creation of such a map involves hand-labelling features

such as parking spaces and lanes, but this is an extremely

expensive and tedious task for a human. Therefore, we make

use of machine learning to reduce the effort on the labeller.

In one-shot machine learning, it is necessary to have a

large amount of labelled data to train a classifier to detect

pedestrians or parking spaces with sufficient accuracy to

make it useful, which may not generalise well over car parks.

To combat this and also maximise flexibility, we use active-

learning algorithms in which a human works in the loop with

the machine to answer the most challenging classifications as

chosen by the algorithm, thus reducing the labelling quantity

for a given desired performance level. In order to further

reduce the labelling effort, we make use of introspective

active learning algorithms [14].
In the car parks we have encountered during the V-

Charge project, we have included the following classes in

the semantic map: lane structures, parking spaces, pedestrian

crossings, and a recommended driving speed for any point

in the environment. The recommended driving speed comes

from the dynamic map, which brings together permanent

aspects of the environment (such as lanes) and dynamic

objects such as pedestrians or vehicles. As the automated

vehicle drives through the car park, it detects these dynamic

objects and incorporates these new observations into the

existing map, which better informs the vehicle how to safely

navigate the area during future visits.

A. Static Map

We use active learning on a synthetic overhead image to

accurately locate all the parking spaces in the car park. The

pedestrian crossings, being so few in number, are labelled

by hand.
1) Synthetic overhead image: The synthetic overhead

image is made by first rectifying the fisheye images, then

using the vehicle pose from the metric map to project the

image points onto a virtual ground plane. When projections

from multiple images lie on the same pixel in the ground

plane, the running mean of the values is used. The overhead

images created of the car parks used in the experiments

section are shown in Figs. 6 and 11.

2) Classification: From the synthetic overhead image, we

train a linear Gaussian process classifier to detect parking

spaces. Gaussian process classifiers have been shown to

perform well in active learning [15]. Initially the classifier

has no training data, and so the user draws rectangles around

a few parking spaces. Negative examples are randomly

extracted from the image at various scales. Training occurs

using the HOG feature [16] representations of these data,

and the classifier returns a pre-defined number of hypotheses

of where further parking spaces may lie in the image.

The hypotheses come from a search over the image at

several scales calculated relative to the average size of the

user-supplied positive examples, over which non-maximal

suppression is applied to increase their positional accuracy.

The user then has the option to accept the hypotheses, or

mark some of them as positive and negative examples, and

retraining the classifier. This cycle can continue until all the

parking spaces are detected to a sufficiently high level as set

by the user.

3) Relative association: Now that we have the positions

of the parking spaces and pedestrian crossings in the syn-

thetic overhead image, for each label we find the fisheye

image in which they are visible and most central. We then

associate that label with that camera pose, and calculate the

transformation between the label and the vehicle pose (Ts,v2
in Fig. 3). This is what allows us to avoid relabelling the

static semantic labels whenever the metric map is updated.

B. Road Network

We have developed an algorithm for automatically gen-

erating a road network, whose only requirement is for the

vehicle to have been driven through each lane at least once.

The algorithm uses only the three-dimensional positions of

the vehicle at regular time intervals, and detects both lanes

and intersections. The method is presented in Algorithms

1 and 2. In summary, we consider the vehicle positions as

nodes in a graph, and connect them to nearby nodes in order

to simplify lanes which are driven several times with slight

displacement each time (see Fig. 8a). We then repeatedly

prune this graph by replacing maximal cliques by their centre

point (or rather, an existing node nearest to their centre point,

see Fig. 8b) until we have a skeleton graph (see Fig. 8c). The

final step involves iteratively exploring the pruned graph to

find the distinct lanes and intersection points, as shown in

Fig. 8d.

C. Dynamic Map

We use a probabilistic representation of dynamic obstacles

to create a recommended speed map we call the dynamic

map. First of all, we project the pixel locations of the

static labels into the global frame, obtaining a metrically

consistent semantic map. In order to use the semantic map

for motion aid we estimate the likelihood of any place in

the map x being occupied by a dynamic object, given the

prior knowledge of the detected labels at x0 and partial

observations of pedestrians z. This posterior distribution is

then used to create a recommended speed map for safer

future traversals of the car park. Note that the pedestrian

detections come from detections in the fisheye images. This



Algorithm 1: Creating and simplifying the adjacency

matrix required for Algorithm 2.

Data: vehicle poses X ∈ R3, connecting distance d, number of
pruning loops P

Result: Symmetric adjacency matrix A
// Connect all nodes within a radius d of each other

1 forall the pairs of poses (xi, x j) ∈ X do
2 if ‖xi − x j‖≤ d then Ai j ← 1
3 else
4 Ai j ← 0; A ji ← 0 // Symmetric A

// Disconnect temporally subsequent nodes within d
5 forall the poses xi ∈ X do
6 n← 1
7 while ‖xi − xi+n‖≤ d // Exit if assertion fails

8 do
9 Ai,i+n ← 0; Ai+n,i ← 0

10 n← n + 1

// Connect nodes in the order they were driven

11 forall the poses xi ∈ X do
12 Ai,i+1 ← 1; Ai+1,i ← 1

// Prune cliques larger than 2, replacing them by the

node nearest to the clique centre

13 for p← 1 to P do
// Produce an ordered list of maximal cliques

14 C ← findMaximalCliques(A)
15 C ← sortDescending(C)
16 R = ∅ // The set of nodes marked for removal

17 forall the cliques c ∈ C such that |c|> 2 do
18 xµ ← mean(xc)
19 xb ← returnNearestNode(xµ,X)
20 N ← returnNeighbours(c, A) // N includes indices

i /∈ c but adjacent to at least one node in c
// Skip cliques containing nodes marked for

removal

21 if N ∩ R = ∅ then
22 Ab,N ← 1; AN,b ← 1

// Find the dead-end nodes

23 D← {i ∈ N for which degreeA(i) = 1}
// Mark these nodes for removal

24 R← R ∪ c ∪ D \ {b}

25 A← removeRowsAndCols(R, A) // remove the rows and

columns of A which refer to the nodes in R

problem can be represented by a graphical model G(V, E)

whose nodes xi ∈ V are the set of discrete map locations.

Fig. 5 shows an example of the probabilistic graphical

model used in this method. A prior probability p(x0) on

the nodes is assigned by considering the various types of

space encoded in the semantic map (i.e., pedestrian crossings,

parking spaces and driving lanes). The maximum a posteriori

estimate is calculated by solving:

x∗ = arg min
x

(
− log

likelihood︷︸︸︷
p(z|x) p(x|x0) p(x0)︸︷︷︸

prior

)
, (1)

where the prior distribution and pedestrian likelihood are

modelled as normal distributions over the map, making the

optimisation linear. To account for the effect of a node xi

on its neighbours N(i), we impose regularisation by adding

linear binary constraints (the second sum in Eq. 2).

p(x|x0) ∝
∑

i

‖ xi − xi0 ‖
2
2 +
∑

i

∑

j∈N(i)

‖ xi − x j ‖
2
2 (2)

p(z|x) ∝
∑

i

‖ zi − xi ‖
2
2 . (3)

Algorithm 2: Iteratively exploring the adjacency matrix

from Algorithm 1 to discover the road network and its

intersections.
Data: Symmetric adjacency matrix A with M rows and columns
Result: Road network R, intersections I∗

1 v← ∅ // Current node

2 T ← ∅ // Termination nodes

3 R← ∅ // Road network

4 I∗ ← {i ∈ {1, . . . ,M} for which degreeA(i) > 2}
5 while A nonempty do

// Intersection nodes

6 I ← {i ∈ {1, . . . ,M} for which degreeA(i) > 2}
// Dead-end nodes

7 D← {i ∈ {1, . . . ,M} for which degreeA(i) = 1}
8 if D 6= ∅ then
9 v← some d ∈ D // Start at a dead-end node

10 T ← I // Terminate at an intersection node

11 else
12 if I 6= ∅ then
13 v← some i ∈ I
14 T ← I \ {v}

15 else
// Remaining road network is only one loop

16 v← 1 // Start anywhere

17 T ← ∅

18 L← v // Lane

19 O← returnNeighbours(v, A) // Options

20 while (i /∈ T ) ∧ (O 6= ∅) do
21 v← some o ∈ O
22 L← (L, v) // add v to the vector L
23 O← returnNeighbours(v, A) \ L // with L as a set

24 R← R ∪ {L} // R is a set of vectors
25 if L1 ∈ I then
26 L← L \ L1 // don’t include start node

27 if L|L| ∈ I then
28 L← L \ L|L| // don’t include terminal node

29 A← removeRowsAndCols(L, A)

Due to the linear nature of the problem, an exact solution is

achieved after a single batch iteration.

The final step is to convert the posterior probability of

a pedestrian over the car park into a recommended speed

profile. We do this by defining minimum and maximum

driving speeds, and use the probability to interpolate linearly

between the two. A high likelihood of a pedestrian lowers the

recommended speed at that location. This produces a map

such as those on the right hand side of Fig. 10.

VI. Experimental Results

In this section we describe the experiments carried out in

two different car parks to validate our metric and semantic

mapping algorithms, and the manner in which they evolve

together. The evaluation is split into two subsections, one

for the Stuttgart car park (Sec. VI-A), and the latter for the

Zurich car park (Sec. VI-B).

A. The Stuttgart Car Park

We have run the metric and semantic mapping pipelines

described in Sections IV and V using data from a car park in

Stuttgart. As a proof of concept, we drove the car manually

around the car park several times. This car park contains

164 parking spaces. The lighting conditions during the data

collection were consistent in the middle of the car park,



Fig. 6: The synthetic overhead image from the Stuttgart car park. The car park is larger and the image much cleaner than that of the Zurich car park, and
so is better suited to active learning.

 

Fig. 5: The graphical model used to represent the probability distribution of
pedestrians. White nodes x correspond to the set of discrete map locations.
Blue nodes x0 represent values after applying the initial prior probability
on a subset of nodes according to their classification as parking spots,
pedestrian crossings, lanes, or other. Green nodes z correspond to the
observations of dynamic objects in a particular map location. Note that
a dynamic object could be observed multiple times (za1, za2) at the same
location a, thus a node xa would updated with several observations.

becoming brighter closer to the long edges (which receive

more natural light). The synthetic overhead image does not

have too many undesirable artefacts (see Fig. 6).

We then use active learning to detect the parking spots

in the synthetic overhead image. In total, the user only

had to manually label 14 parking spaces over 6 rounds

of active learning to achieve a precision of over 0.93 (see

Fig. 7), which substantially reduces the human effort in such

a labelling task. In addition, if we were to map further floors

of this car park, the classifier learned from this floor could

be applied to those to make the process very easy for the

labeller. Note that the number of times the user accepts or

rejects the hypotheses returned by the classifier at each round

of training is not shown. This feedback is very quick and is

a negligible contributor to the labelling effort. A further note

is that the only negative examples in the training data were

rejected hypotheses from the classifier, thus at epoch 1 there

is only one negative: the vector 0.

In Fig. 8 we show some of the intermediary steps and

the final result of the road network generation algorithm

on the Stuttgart car park. In a totally unsupervised manner

(aside from choosing the parameters r and p for Algorithm

1) the entire road structure is extracted from the poses. This

road structure together with the parking spots could now be

used for autonomous driving. We also detect pedestrians and

process the dynamic map for this car park, but this is not

shown. For a demonstration of this, see Sec. VI-B.

B. The Zurich Car Park

For the evaluation of the improvement cycle and auto-

mated parking we use an underground car park in Zurich.

Fig. 7: The precision of the parking space detections (blue) across active
learning loops. The cumulative number of hand-drawn labels is shown as
the dashed green line. Note that at each loop, the user specifies some of
the classifier hypotheses as correct and incorrect, and these are not shown
as they are much quicker to input than drawing new labels from scratch.

Fig. 9: The car park in Zurich. Note the difficult lighting conditions, resulting
in glare off the ground.

There are 80 parking spaces which vary in size depending on

their position relative to the edges and corners. The parking

spaces are delineated by yellow markers as shown in Fig. 9.

The car park is not planar; there is a drain running along

the centre, and the ground is hinged at this point all the

way to the edges. Some of the yellow lines on the floor are

omitted in favour of yellow columns, as pictured. There are

two pedestrian crossings, one is shown in the figure as yellow

hatching on the right.

The data are organised as follows: the car was driven

twice around the car park as an initial visit, and then there

were six subsequent ‘revisit’ loops. During each revisit loop,

pedestrians walk between the pedestrian crossings; in revisit

loops 1 to 3, they walk along the right-hand pedestrian

crossing, and then in loops 4 to 6 they walk along the left-

hand pedestrian crossings, as shown in the left hand side of



(a) The fully connected graph
(Algorithm 1, lines 1 to 12).

(b) The graph after one pruning
loop (Alg. 1, lines 13 to 25).

(c) The finished graph at the end
of Alg. 1.

(d) The lanes as calculated by
Alg. 2.

Fig. 8: The process of calculating the road network using the method from Sec. V-B applied to the Stuttgart car park.

(a) Initial drive.

(b) The maps from data up to and including the 3rd revisit.

(c) The maps from data up to and including the 6th revisit.

Fig. 10: On the left, the red dots represent projections of the detected
pedestrians into the static map. On the right, the evolution of the dynamic
map as more pedestrians are detected. In the dynamic map, blue represents
lower danger (higher speed) and yellow represents more danger (higher
speed). The top dynamic map is calculated using only the prior over
pedestrians given the static map.

Fig. 10.

We then use these loops to emulate the process in Fig. 2:

the first map (comprising both metric and semantic compo-

nents) is created using the initial run, then as we go around

the evolution cycle, the next map comprises the initial loop

plus the 1st revisit. The third map comprises the initial run,

the 1st and 2nd revisits, and so on. In total we have seven

maps, each more informed than the previous one.

Because we want to minimise the human labelling effort,

we only label the parking spaces and pedestrian crossings

once, in the base map. The synthetic overhead image used

for creating those labels is shown in Fig. 11. However,

because the labels are associated with the vehicle positions

from which they were visible in the images, the changes in

the metric map shifts the global positions of those semantic

labels as the maps evolve. This evolution process is shown

Fig. 11: The synthetic overhead image of the Zurich car park.

(a) Initial visit

(b) First revisit

Fig. 12: The evolution of the semantic map through the original drive, and
the first revisit. The parking spaces are the orange rectangles, lanes are in
blue and the intersections are purple circles. Notice that the top and middle
rows of parking spaces shift visibly from (a) to (b) as the changes in the
metric map propagate through to the positions of the semantic labels.

in Fig. 12. Note that the overhead image for the Zurich

car park is much more distorted and blurry than the one

for the Stuttgart car park. This reduces the effectiveness of

active learning, and generally the human will have to do more

manual labelling if this is the case. Secondly, the positions

of the semantic labels do visibly change between the first

and second maps in Fig. 12.

Next we use the first four maps to test the repeatability of

the autonomous parking system. We performed the following

actions:

1) The car is driven to a point 20m away from the desired



Fig. 13: The positions of the five autonomous parking manoeuvres of the
vehicle in map for maps 0 to 3. Map 0 comprises the initial drive, then
map 1 includes both the initial drive and the 1st revisit, then map 2 includes
those for map 1 plus the 2nd revisit, and so on. The displacement between
the parking centres and the position of the parking spot (at the origin) is due
to the difference between the vehicle centre and the centre of the parking
spot.

parking location, then

2) The car localises itself in the metric map and uses the

semantic map to drive autonomously along the lane

and park in the parking space.

3) Next, the car is manually driven out of the parking

space to the same starting location 20m away, and the

process is repeated for a total of five times per map.

Calculating the ground truth of localisation systems for

mobile platforms is an open problem, so we have done

this by estimating the position of the vehicle relative to

a chequerboard at a fixed position in the car park which

is visible in the camera images. The parking positions are

shown in Fig. 13. This shows that despite the fact that the

metric maps are recalculated in an unsupervised manner and

the positions of the semantic labels shift acoordingly, the

parking accuracy is very consistent, with a significant cluster

of points within 0.13m and the few outliers never varying by

more than 0.3m. We attribute these outliers to errors in the

odometry, and the fact that the parking planner plotted a bad

course for the vehicle during one of the parking manoeuvres

during the first revisit.
Evolution of the speed map: During the initial drive there

are no pedestrians in the car park, but during each revisit

there are pedestrians walking along the pedestrian crossings.

Using the same active learning framework explained in

Sec. V-A.2 applied to the raw camera images, we detect

these pedestrians and then using the method detailed in

Sec. V-C we update the dynamic map. This dynamic map

represents the recommended driving speed for subsequent

visits to the car park. In Fig. 10 we show the positions of

the pedestrians as red points on the left, and the evolution of

the dynamic map on the right. It is also convenient that as

we see more pedestrians, the classifier becomes increasingly

good at detecting them, thus reducing the human labelling

effort as time goes on.

VII. Conclusions

We have presented a functioning end-to-end system which

provides a solution to the question of how metric and

semantic maps should be fused together. This approach has

been framed within with principle that maps should be

continuously improving as an autonomous vehicle revisits

previously explored locations. We have shown that parking

accuracy using these maps is consistently good as these re-

visits and map refinements take place. The whole framework

is streamlined in terms of reducing the human supervision

effort, while maintaining the high degree of accuracy re-

quired for autonomous operation. We have demonstrated the

stability of the system on two car parks as part of the V-

Charge project.
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