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Introspective Classification for Robot Perception
Hugo Grimmett Rudolph Triebel Rohan Paul Ingmar Posner

Abstract—In robotics, the use of a classification framework
which produces scores with inappropriate confidences will ulti-
mately lead to the robot making dangerous decisions. In order
to select a framework which will make the best decisions, we
should pay careful attention to the ways in which it generates
scores. Precision and recall have been widely adopted as canonical
metrics to quantify the performance of learning algorithms,
but for robotics applications involving mission-critical decision
making, good performance in relation to these metrics is insuffi-
cient. We introduce and motivate the importance of a classifier’s
introspective capacity: the ability to associate an appropriate
assessment of confidence with any test case. We propose that
a key ingredient for introspection is a framework’s potential to
increase its uncertainty with the distance between a test datum
its training data.

We compare the introspective capacities of a number of
commonly used classification frameworks in both classification
and detection tasks, and show that better introspection leads
to improved decision-making in the context of tasks such as
autonomous driving or semantic map generation.

I. Introduction

In robotics, the outputs of our classification frameworks are

intended to be used to make decisions. We want the output

of a classifier to help the robot decide whether to stop at a

traffic light, whether to slow down in front of a pedestrian,

or how to populate a semantic map. The processes by which

we go from data to decision must be very carefully examined

not least when our robots’ behaviours can impact the safety

of humans sharing their workspace.

A common way to improve a robot’s interactions is to give

it prior information in the form of a semantic map, informing

the robot about how its environment behaves and how it

can interact with it. In almost all safety-critical applications

these maps are hand-made, because the current state-of-the-

art solutions to automatic mapping are not robust enough to

ensure the high quality of maps required for safe, autonomous

robot operation.

Following classical decision theory, in situations where a

poor choice of action can incur a large cost (e.g. driving

forwards into another vehicle, or incorrectly placing a par-

ticular semantic label in a map), a robot will only choose that

action if its classifier is supremely certain. In practice, we

see that commonly-used classification frameworks can assign

extremely high certainty or confidence to classifications which

turn out to be incorrect. In order to avoid these large costs, it

follows that when our classifiers make mistakes they should

do so only with high uncertainty.

For example, a classification error can occur when the

classifier is presented with a test datum which is unlike

anything it saw during training. This could be as a result

of the training set not containing the true class of this test

datum, or because it is a new viewpoint of an existing class.
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In the context of autonomous driving, the same parked car

can appear very differently given changing weather or time of

day. These new and unusual test data are common in practice

since the training data can never be fully representative of the

continually evolving and complex environments in which our

robots operate. In this situation, we argue that the appropriate

response is for our classifier to respond with high uncertainty.

There is a tendency to choose one particular classification

framework over another based on the standard metrics of

classification: precision and recall. Here we show that these

are insufficient to characterise whether a classifier will provide

appropriate uncertainties. Without these appropriate uncertain-

ties, our robots are doomed to make costly and potentially

catastrophic decisions .

Therefore, rather than using a classifier which makes correct

and incorrect decisions with similarly high confidence, it is

preferable to use a classifier which makes mistakes only with

high uncertainty, and correct classifications with high certainty.

Hence, we seek classifiers with the capacity to adjust the

confidence of a particular classification on the basis of how

‘qualified’ they are given their own prior knowledge, embodied

by their training data. If a classification framework leads to

an overconfident estimate of the class label, then the entire

decision making process may be ineffective. Our work inves-

tigates this introspective capacity in a number of classification

frameworks commonly used in robotics: the Support Vector

Machine (SVM), LogitBoost, the Random Forest, the Gaussian

Process Classifiers (GPC), and the Informative Vector Machine

(IVM). We use the term ‘introspective’ to describe a classifier

that gives appropriate probabilities, thus making true classifi-

cations with confidence and makes mistakes only with high

uncertainty.

We carefully examine how these classification frameworks
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use distance between training and test data to moderate the

confidence in a classification. Intuitively, a test datum which is

far away in feature space from the training data is more likely

to be misclassified than one which lies in the middle of a dense

cluster from one class, and thus the classification should be

made with greater uncertainty. Most classification frameworks

make use of a model, such that instead of calculating a distance

from the test datum to all the training data, they calculate

a distance between the test datum and the model (which

can be further affected by the use of a kernel, effectively

warping the feature space). Therefore, the choices of model

and measure of distance greatly affect the uncertainty with

which classifications are made. Some frameworks consider

one single discriminant to separate the classes, while others

average over a variety of possible discriminants. The results

we present indicate that the latter tends to be characteristic of

classifiers with a better sense of introspection, as a result of

their ability to predict the variance from the responses of the

individual discriminants for a test datum.

The key contributions of this work are:

• The concept of a classifier’s introspective quality, regard-

ing how it expresses the relevance of its prior information

when making detections,

• A comparison of how commonly-used classification

frameworks generate probabilities, and insights regarding

whether they are likely to display introspective qualities

from a theoretic standpoint,

• Results to show the introspective behaviour of those clas-

sification frameworks when applied to tasks commonly

tackled in robotics, such as classification and detection,

and

• The further application of those classifiers to decision-

making problems, and results which indicate that intro-

spective classification leads to better decision-making.

This motivates the opinion that considering the intro-

spective quality of classification frameworks is critical in

robotics.

• All of the above are evaluated using publicly-available

data sets which are relevant to mobile robotics.

Some of this work has appeared in Grimmett et al. [2013].

Here we present a more detailed treatment of the concepts and

substantial evaluation on two additional publicly available data

sets, along with the important implications of introspection in

terms of decision making.

We start by offering a theoretical insight into why some

classification frameworks may exhibit greater introspective

qualities than others. We do so by examining the methods

by which commonly used algorithms generate probabilities

(Section III), and specifically detailing the key methods for

the classifiers we are comparing (Section IV). Then we

demonstrate the various behaviours of those classifiers in

several scenarios related to autonomous driving. We consider

the similar but nuanced cases of classification (estimating

the likelihood that an image contains one particular class of

object over another, Section V-C) and detection (estimating

the likelihood that an image contains one privileged class of

object over a background class comprising all other classes,

Section V-D). Finally, we demonstrate the behaviour of the

classifiers in terms of decision making (in Section V-E). As

we vary the relative costs of false positive and false negative

errors,

II. RelatedWorks

For a number of years now robots have routinely con-

sumed higher-order abstractions from raw sensor data. Suc-

cessful applications are as diverse as the detection of ground

traversability (e.g. Thrun et al. [2006]), the detection of lanes

for autonomous driving (e.g. Huang and Teller [2010]), the

consideration of classifier output to guide trajectory planning

and exploration (see, for example, Meger et al. [2008], Velez

et al. [2011]) or the active disambiguation of human-robot

dialogue [Tellex et al., 2012]. These works commonly exploit

classification output on a model-trust basis; systems are op-

timised with respect to precision and recall, and egregious

misclassifications (including vastly over-confident marginal

distributions obtained from some classification frameworks)

are accepted as par for the course. However, the suitability

of the classification framework employed with respect to its

introspective capacity has not previously been considered in

robotics. Thus, we consider motivating, defining, and inves-

tigating introspection in a robotics context to be the primary

contribution of our work.

The concept of introspection as introduced here is closely

related to considerations in active learning, where uncertainty

estimates and model selection steps are often employed to

guide data selection and gathering for an incremental learning

algorithm. Kapoor et al. [2010], for example, present an active

learning framework for object categorisation using a GPC

where classifications with large uncertainty (as judged by

posterior variance) lead to a query for a ground-truth label and

are subsequently used to improve classification performance.

Joshi et al. [2009] address multi-class image classification

using SVMs and propose criteria based on entropy and best-

versus-second-best measures (see Section III-B) for disam-

biguating uncertain classifications. Holub et al. [2008] propose

an information-theoretic criterion that maximises expected

information gain with respect to the entire pool of unlabelled

data available. Hospedales et al. [2013] discuss optimising

rare class discovery and classification using a combination of

generative and discriminative classifiers. In the related field of

reinforcement learning, the authors of Li et al. [2008] present a

general framework which determines whether enough labelled

data have been provided to constrain certain problems. If the

learners space of solutions is insufficiently constrained such

that its output cannot be guaranteed to be within ǫ of the true

solution with probability 1−δ, it asks for more labelled data.

This accuracy guarantee is same for both false positive and

false negative errors, and thus the framework is not appropriate

for situations in which costs associated with those errors are

imbalanced. In the context of autonomous systems, the costs

are commonly imbalanced.

Our treatment of introspection is further informed by an

ongoing discussion in the machine learning community re-

garding how best to account for variance in the space of
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feasible classifier models when training on, essentially, an

incomplete set of data. For example, Tong and Koller [2002]

present an incremental algorithm for text classification using

SVMs and the notion of a version space, the set of consistent

hyperplanes separating the data in a feature space induced

by the kernel function. Zhang et al. [2012] introduce a max-

margin classifier achieving better generalisation to unseen test

data given a limited training corpus. Here, distinctiveness of

training instances is assessed using the local classification

uncertainty. A global classifier then incorporates these uncer-

tainties as margin constraints, yielding a classifier that places

less confusing instances farther away from the global decision

boundary. We share the intuition that accounting for variance

in version space when selecting a model leads to an increased

introspective capacity. As a secondary contribution, therefore,

our results serve to further corroborate this intuition.

The semantic mapping of a robot’s workspace has become

a popular line of research in recent years. A rich body of work

now exists in which semantic labels are generated based on a

variety of sensor modalities and classification frameworks (see,

for example, Anguelov et al. [2005], Martı́nez-Mozos et al.

[2007], Posner et al. [2009], Douillard et al. [2008], Pronobis

and Jensfelt [2012], Sengupta et al. [2012], Paul et al. [2012]).

We consider introspection to be paramount to reducing the

human effort required to automatically generate semantic maps

which we can then use for autonomous operation.

Niculescu-Mizil and Caruana [2005] recognise that the

question of whether the probabilities produced by various

classification frameworks are appropriate is important, a sen-

timent we clearly share. They conclude that poorly-calibrated

frameworks (in a probabilistic sense) can be effectively cor-

rected using an additional learned calibration using either

Platt’s method or isotonic regression. They find Random

Forests to perform well pre-calibration (although they did

exhibit a tendency to be under confident, consistently with our

findings), and that SVMs perform well after post-calibration.

They associate the need for further calibration specifically to

the classifiers using max-margin optimisation, rather than the

treatment of distances in feature space and the distribution of

models over version space, as we do. They also do not explore

the effects of making decisions using these probabilities.

Berczi et al. [To appear 2015] have confirmed the intro-

spective power of GPCs over SVMs, employing them to avoid

areas of terrain for which the height may be misclassified.

III. Introspection, Uncertainty, and DecisionMaking

In this section we first describe a crucial property we expect

classification frameworks to require in order to be introspec-

tive: marginalisation over possible models (Section III-A).

Then we describe some measures of uncertainty, motivating

the use of normalised entropy as the most appropriate measure

(Section III-B). We finish by describing a manner in which

to obtain decisions from probabilistic classification results,

and motivate the practice of choosing outcome costs directly

rather than adjusting thresholds to modify a robot’s behaviour

(Section III-C).

A. Introspective Capacity

Introspection concerns not the final class decision but rather

the confidence with which this decision is made. The concept

is motivated by the desire to take appropriate action when a

classifier indicates high uncertainty. Our approach to introspec-

tion is grounded in the fact that the often cited assumption of

independent and identically distributed (iid) training and test

data is routinely violated in robotics; in the limit of continuous

operation in the real world, one-shot classifier training is rarely

performed on a complete (or even fully representative) set of

data.

Let a classifier map an input x ∈ �d to one of a set of

classes C = {C1, . . . ,Cc} via an associated label y ∈ {1, . . . ,c},

where c is the number of classes. Prior to training, domain

specific knowledge is often used to constrain the family of

classification models employed (for example in the form of

a kernel or a type of base classifier). Classifier training then

involves learning a set of (hyper-) parameters given a training

dataset {X,Y}, where X = {x1, . . . ,xN} denotes the set of N

feature vectors and Y denotes the set of corresponding class

labels. The training data implicitly give rise to a probability

distribution over the set of all possible models (or hypotheses)

within the chosen family, M, such that

{X,Y}→ p(m | X,Y) , m ∈M. (1)

With a slight abuse of notation, m here denotes any member of

the family of possible models, M. In the following we make

this relationship explicit by conditioning on both a model (or

family of models) as well as on a test datum x∗. Typically,

training leads to the selection of a single model, m̃ from M

such that a prediction y∗ for a new, unseen feature vector x∗
is obtained by approximating

p(y∗ | X,Y,x∗) ≈ p(y∗ | m̃,x∗) , m̃ ∈M. (2)

This is illustrated in Figure 2a. Common examples of this

type of classification framework include SVMs and Boosting

classifiers, where an optimisation is performed to select the

best model given the training data (see Section IV). The

iid assumption here is inherent since it is assumed that m̃

remains the best model for all predictions of unseen data.

Breaking this assumption therefore often renders the chosen

model suboptimal.

An alternative to the single model approach are classifi-

cation frameworks which take into account the entire set of

possible models in the specified family conditioned on the

training data, such that

p(y∗ | X,Y,x∗) ≈ p(y∗ | M,x∗). (3)

This case is illustrated in Figure 2b. Here the shading indicates

the distribution p(m | X,Y) with darker shades indicating

increased probability. To aid intuition, predictions of four

randomly selected members of M are also illustrated. Final

predictions are made by taking into account opinions from all

members of M, often via the computation of an expectation

such as for a GPC (see Section IV). Crucially, when consid-

ering an expectation over all of M, the increased variance in
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feasible (and therefore likely) models at a distance from the

training data leads to a moderation of the class predictions.

Between the two extremes lies the Random Forest, which

chooses a number of differing samples fromM, and averaging

over the responses from these.

We believe that this marginalisation over plausible models in

version space is a key component of an introspective classifier.

B. Characterising Uncertainty

In order to characterise the introspective capacity of a clas-

sification framework, a well-tempered measure of the inherent

uncertainty in the classification output is required. For this

purpose, we use an information-theoretic quantity known as

normalised entropy, HN , defined as

HN = −

c
∑

i=1

p(y =Ci | x) logc

[

p(y =Ci | x)
]

. (4)

This is equivalent to the Shannon entropy measure normalised

by its maximum, which is the entropy of the c-dimensional

uniform distribution, log(c). The result is a measure ranging

between 0 and 1 where a higher value indicates greater

uncertainty in the classifier’s belief, as shown by the blue curve

in Figure 3.

An alternative uncertainty measure proposed in the ac-

tive learning literature is the best-versus-second-best (BvSB)

heuristic [Joshi et al., 2009] which equals 1 minus the

difference between the largest and the second largest class

likelihood estimates, as shown by the red curve in Figure

3. This measure attempts to characterise the reliability of

the maximum likelihood estimate rather than encoding the

shape of the full distribution over class labels. The BvSB

and normalised entropy measures are closely related in the

binary-classification setting, which is that of this paper. We

use normalised entropy throughout the remainder of this work

for two reasons: firstly, it is formed from an information-

theoretic point of view, compared to BvSB which is an ad-

hoc heuristic; secondly, in multi-class settings it considers

the entire distribution over classes, rather than BvSB which

only takes into account only the two classes with the highest

probability.

C. Decision Making

Autonomous robots typically have at their disposal a set of

actions, each of which is appropriate to particular situations.

The difficulty lies in choosing which action to perform when

there is uncertainty about the state of the world. Follow-

ing standard decision theory [LaValle, 2006], we calculate

the expected loss of performing a particular action when

we have a set of likelihoods for each state of the world

(p(C1), p(C2), . . . , p(C|C|)), defined as:

L(a) =

|C|
∑

i=1

L(a,Ci)p(Ci), (5)

where L(a,Ci) is the cost or loss associated with each potential

outcome. We then choose to perform the action a which

minimises this expected loss.

For our decision-making experiments, we later consider a

simple scenario in which there are two states the world can be

in: either there is an object in the way (C2, e.g. a pedestrian,

car, or traffic light), or there is not (C1). There are also two

available actions a ∈ {stop,go}. We wish our robot to stop

if there is an object in its path, or go if the way is clear.

The losses will vary from application to application, but in

the case of autonomous driving it is sensible to associate a

very high cost to performing the go action when there is in

fact an object in the way (C2), resulting in a collision, and

a lesser cost to performing the action stop when the path is

clear (C1), resulting in an unnecessary delay. While inefficient,

this false positive error is more desirable than running a red

light or colliding with another vehicle. Interestingly, in the

case of driver assistance systems (e.g. automatic emergency

braking) the costs are reversed: the loss associated with a

false positive (an un-necessary emergency stop) is very large,

and a false negative (a missed opportunity to perform an

emergency stop) is a less undesirable outcome. In Figure

4a we show the expected losses of the two actions when

there is equal cost associated with each type of error. We

can see that the intersection between the two lines occurs at

p(C1)= p(C2)= 0.5. As we increase the cost of a false negative

(performing the go action when there is a person, C2), the

range of detection probabilities p(C2) which result in a go

action reduces, as seen in Figure 4b. Since an introspective

classifier is uncertain when it makes mistakes, the errors will

be close to p(C2)= 0.5 as the teal distribution in Figure 4c, and

so those errors will largely be subsumed by the stop action.

A less introspective classifier will make more mistakes near

the extremes of the class marginal spectrum (purple in Figure

4c) and so more of those errors will occur in the go region,

resulting in a greater prevalence of very expensive errors.

Thus ideally, as we make the cost of a false negative much

greater than that of a false positive, our classifiers become

more and more cautious, employing safer actions and incurring

less overall cost. Crucially, this relies upon the assumption

that most of a classifier’s mistakes lie in the middle of the

probability spectrum.

Another way to characterise the desirable introspective

property is to consider the proportion of the errors contained in

some window around p(C2) = 0.5, represented by the orange

box in Figure 4d. As we increase the half-length of the

box from 0 to 0.5, we would like the proportion of errors

to increase quickly, and then stabilise as we encompass the

regions of high confidence, represented by the teal curve in

Figure 4e. A less introspective classifier would have errors

near p(C2)= 0 or p(C2)= 1, and so the contained errors would

resemble the purple curve in Figure 4e. We will present curves

resembling these for each classifier from real data in Section

V-E.

Often, the temptation is to tune the costs to steer the robot

towards the ‘desired’ behaviour. Instead, we ought to focus

on whether the costs are correct (because it is usually easier

to quantify these than a probability threshold) and allow the

decision theory to choose the behaviour which is true to

the spirit of the cost function. This is only possible if the

probabilities and uncertainties supplied by the classification
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Fig. 2: An illustration of the two types of classification frameworks considered: (a) during training a single model is selected

to classify an unknown datum x∗ some way removed from the training data; (b) training leads to a distribution over models

which is considered entirely to arrive at the final prediction. This illustration is for the family of linear models (indicated

by solid (a) and dashed (b) lines). Each predictor is further annotated with its individual prediction. The overall predictive

distribution is shown in the bottom right of each subplot. The shading in part (b) indicates the probability weights associated

with individual models. Darker regions contain more weight. Note that the overall predictive distribution in (a) stems from

the single model used and is, in this case, inappropriately confident. In part (b), however, the overall predictive distribution is

moderated by computing the expectation over all models. This gives rise to a much more appropriate uncertainty estimate —

the introspective quality we seek. (Best viewed in colour.)
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frameworks are sensible.

IV. Classification Frameworks

We now present a brief overview of the specific classifica-

tion frameworks considered in this work: SVMs, LogitBoost,

the Random Forest, GPCs, and the IVM. The implementations

of these are all off-the-shelf, using popular libraries detailed

in each subsection. The goal is not to find the most accurate

classifier, but rather to examine the consistency of the con-

fidences with which certain decisions are made. We believe

that this consistency in choosing the appropriate decision

given the potential losses is an often ignored and paramount

characteristic of classification frameworks, and that in the

context of safety-critical tasks it could be worth accepting a

decrease in accuracy if it results in an increased introspective

consistency. In the following descriptions of the frameworks

we focus on properties pertinent to introspection, specifically

how the use of distance between data affects the classifi-

cation confidence, and what type of models they use. For

simplicity but without loss of generality, this work considers

predominantly binary classification such that C = {C1,C2}. For

consistency we adhere to notation commonly found in the

literature where a discriminant function is often denoted as

f (·). We note that this is equivalent to a particular model m

as described in the previous section.

A. Support Vector Classification

SVM classification is well established in robotics so that

we provide here only an overview. For a detailed account

the reader is referred to, for example, Burges [1998]. SVMs

are based on a linear discriminant framework which aims to

maximise the margin between two classes. The model param-

eters are found by solving a convex optimisation problem,

thereby guaranteeing the final classifier to be the best feasible

discriminant given the training data. Once training is complete,

predictions on future observations are made based on the

signed distance of the observed feature vector from the optimal

hyperplane, defined by the weight vector w and bias w0, such

that

f (x∗) = w⊤φ(x∗)+w0 =

N
∑

i=1

αiyik(xi,x∗)+w0, (6)

where N is the size of the training set, αi refers to a

Lagrange multiplier associated with datum i, w0 denotes a bias

parameter, φ refers to the feature map, and k(xi,x j) denotes

the kernel function.
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Fig. 4: (a) We have set equal cost to a false positive (take the stop action when there is, in fact, no person: C1) and the false

negative (take the go action when there is a person: C2). The expected losses from the two actions meet at p(C1) = p(C2) = 0.5,

and choose the action which minimises the expected loss.

(b) We have made the cost of a false negative three times the cost of a false positive, which reduces the probability region

for which we choose the go action. By increasing the cost of accidentally hitting a pedestrian, we are trying to create a more

cautious system, which will take the stop action more of the time.

(c) A more introspective classifier (teal) will make most of its mistakes with high uncertainty, when p(C2) is near 0.5. Less

introspective classifiers (purple) will make mistakes with low uncertainty.

(d) As we grow the orange box outward from the centre, we can calculate how many errors are contained for a particular

distribution in (c).

(e) We show the result of plotting the number of errors contained as we grow the orange box for the two idealised classifiers

in (c). The teal (more introspective) classifier catches more errors when the box is small than for the purple (less introspective)

classifier. It also reaches steady-state because there are very few errors around p(C2) = 0 and p(C2) = 1, when the classifier is

confident.

The parameters αi and w0 characterising the discriminant

function are obtained by an optimisation procedure, and αi is

then non-zero only for support vectors xi. The SVM algorithm

selects a particular weight vector (as defined by the support

vectors), which gives rise to a maximum margin separator.

The kernel function amounts to a scalar product between

two data, which have been transformed from d-dimensional

feature space into some higher dimensional space. The nature

of this mapping between spaces is inherent in the choice of

kernel and need not be specified explicitly (the kernel trick).

The regularisation and kernel parameters are learnt using

ten-fold cross-validation. We discuss our choices of kernel

functions in Section IV-F.

In its original form, the SVM classifier output is an uncal-

ibrated real value. A common means of obtaining a proba-

bilistic interpretation is by using Platt’s method [Platt, 1999].

This algorithm was later improved by Lin et al. [2007], which

is implemented in the library we use for all SVM training,

calibration, and testing, LIBSVM [Chang and Lin, 2011].

Here, using a hold-out set not used for classifier training, a

parametric sigmoid model is fit directly to the class posterior

p(y∗ =C2 | f (x∗)), such that

p(y∗ =C2 | f (x∗)) =
1

1+ exp(A f (x∗)+B)
. (7)

The sigmoid parameters A and B are determined using New-

ton’s method with backtracking line search.Note that class

likelihoods are derived here using only a single estimate

of the discriminative boundary obtained from the classifier

training procedure. No other feasible solutions are considered.

Hence, the predictive variance of the discriminant f (x) is

not taken into account while determining probabilistic output

[Rasmussen and Williams, 2006]. Although there is no guar-

antee that the method converges, in general it works very well

and finds the global optimum owing to the convexity of the
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objective function.

B. LogitBoosting Classifiers

Boosting is a widely used classification framework which

involves training an ensemble of weak learners in sequence.

The error function used to train a particular weak learner

depends on the performance of the previous models [Bishop,

2006]. Each weak learner h(x) is trained using a weighted form

of the dataset in which the weights depend on the performance

of the previous classifiers. Predictions from a boosted classifier

are obtained using a weighted combination of the individual

weak learner outputs such that

sign( f (x∗)) = sign

















M
∑

i=1

wihi(x∗)

















, (8)

where M is the number of weak learners used.

LogitBoost [Friedman et al., 1998] is a popular choice

for a boosting-based classifier as it natively outputs class

probability estimates following a calibration via a sigmoid.

Weak learners are often chosen to be decision trees and

training is conducted by fitting additive logistic regression

models by stage-wise optimisation (using Newton steps) of the

Bernoulli log-likelihood. The algorithm works in the logistic

framework and yields a predictor function f (x) learnt from

iterative hypothesis training. Cross-validation is used to set

parameters like the learning rate, tree depth, and the number

of boosting rounds. The class-conditional probabilities are

obtained from the predictor function via

p(y∗ =C1 | x∗) =
exp( f (x∗))

exp( f (x∗))+ exp(− f (x∗))
, (9)

which is the same sigmoid used in the SVM in Section IV-A

with parameters A = −2 and B = 0. The procedure possesses

asymptotic optimality as a maximum likelihood predictor

[Friedman et al., 1998, Hastie and Tibshirani, 1990]. However,

the method of converting the output of the predictor function

to class-conditional probabilities is not fully probabilistic and

does not account for variance in the underlying predictor

function. In our experiments we use 500 learners for training.

Throughout this work we use the MATLAB implementation

of LogitBoost for classifier training and testing.

Because the LogitBoost classifier ultimately settles on a

single decision boundary across the input space, we expect

that it will suffer from the same introspective issues as the

SVM.

C. Gaussian Process Classification

Binary classification using a Gaussian Process (GP)

[Williams and Barber, 1998, Rasmussen and Williams, 2006]

is formulated by first introducing a latent function f (x) and

then applying a sigmoid function Φ (similar to the sigmoid

described in Section IV-A, except that the the predictive

variance of the GP is used as well as the predictive mean)

to obtain the prediction p(y∗ = C1 | x∗) = Φ( f (x∗)). A GP

prior is placed on the latent function f (x) ∼ GP(µ(x),k(x,x′))

characterised by a mean function µ(x) and a covariance (or

kernel) function k(x,x′). GPC training establishes values for

the hyper-parameters specifying the kernel function k by

maximising the log marginal likelihood of the training data.

Probabilistic predictions for a test point are obtained in two

steps. First, the distribution over the latent variable correspond-

ing to the test input is obtained using

p( f∗ | X,Y,x∗) =

∫

p( f∗ | X,x∗, f )p( f | X,Y)d f , (10)

where p( f | X,Y) = p(Y | f )p( f | X)/p(Y | X) is the poste-

rior distribution over latent variables. This is followed by

marginalising over the latent f∗ to yield the class likelihood

p(y∗=C1 | X,Y,x∗) as

p(y∗ =C1 | X,Y,x∗) =

∫

σ( f∗)p( f∗ | X,Y,x∗)d f∗. (11)

Exact inference is analytically intractable due to the sigmoid

likelihood function. Instead, we leverage expectation propa-

gation (EP) [Minka, 2001], a method widely used for this

purpose.

The GPC framework offers two key benefits over the

other approaches discussed here [Rasmussen and Williams,

2006]. Firstly, the classification output has a clear probabilistic

interpretation as it directly results in the class likelihood.

In contrast, neither the SVM nor the Boosting framework

provide an inherently probabilistic output in the Bayesian

sense, but instead estimate a suitable calibration. Secondly, and

crucially, the GP formulation addresses uncertainty or predic-

tive variance in the latent function f (x) via marginalisation

(or averaging) over all models induced by the training set

resulting in the estimate p(y∗ =C1 | X,Y,x∗) from Equation

(11). This process also gives rise to the well known property

of increased variance while far away from the data in GP

regression. Again this is in contrast to the SVM or Boosting

estimate p(y = Ci | f̂ ,x∗) that rely on a single discriminant

estimate f̂ : X → Y learnt via minimisation. In the context

of introspection, the ability to account for predictive variance

is a key advantage of Bayesian classification approaches.

Throughout this work we use the GPML toolbox [Rasmussen

and Nickisch, 2010] for GPC training and testing.

D. The Informative Vector Machine

A key drawback of a GPC is its significant computational

demand in terms of memory and run time during training and

testing, more than any of the other frameworks considered

here. This is due to the fact that the GP maintains a mean µ,

as well as a covariance matrix Σ, which is computed from a

kernel function and is of size N×N. A number of sparsification

methods have been proposed in order to mitigate this compu-

tational burden. For efficiency, in this work we adopt one such

sparsification method: the Informative Vector Machine (IVM)

[Lawrence et al., 2002]. The main idea of this algorithm is to

only use a subset of the training points denoted the active set,

I, from which an approximation q( f | X,y) = N( f | µ,Σ) of

the posterior distribution p( f | X,y) is computed. The IVM

algorithm computes µ and Σ incrementally, and at every

iteration j selects the training point (xk,yk) which maximises

the entropy difference ∆H jk between q j−1 and q j for inclusion
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into the active set. As q is Gaussian, ∆H jk can be computed

by

∆H jk = −
1

2
log |Σ jk |+

1

2
log |Σ j−1|. (12)

We use an efficient form of this, the details of which can be

found in Lawrence et al. [2005]. The algorithm stops when

the active set has reached a desired size. We choose this size

to be a fixed fraction q of the training set, which we set to be

0.4. Throughout this work we use the IVM MATLAB toolbox

[Lawrence] for both training and testing.

To find the kernel hyper-parameters θ of an IVM, two steps

are processed in a loop for a given number of times: estimation

of I from θ and minimising the marginal likelihood q(y | X),

thereby keeping I fixed. Although there are no convergence

guarantees, in practice a small number of iterations is sufficient

to find good kernel hyper-parameters.

Importantly for our work, since inference with the IVM

is similar to that with a GPC, the IVM retains the model

averaging described in (11). We argue, therefore, that the IVM

provides a significant and well-established improvement in

processing speed over a GPC while maintaining its introspec-

tive properties (see Section V for details).

E. Random Forests

Random Forests [Breiman, 2001] are made up of an ensem-

ble of decision trees generated via bagging. Bagging (a port-

manteau of “bootstrap aggregating”) involves creating multiple

classifiers using different subsets of some aspect of the training

data, in this case two aspects are bagged simultaneously: the

training data, and the feature dimensions. During testing, the

output p(C2) is the fraction of the individual trees which

classified the datum as being from that class.

The trees contain multiple binary nodes or branches, each

of which thresholds on a particular feature dimension of the

data, learning the threshold which helps split the training data

into the two classes. We have set each tree to use a number

of feature dimensions equal to the square root of the total

number, as recommended by the literature, with a total of

500 trees. Throughout this work we use the Bagged Decision

Tree functions in the MATLAB statistics toolbox (which is

an implementation of Random Forests) for both training and

testing.

This combination of many differing decision boundaries

(one boundary per tree) represents a sampling and then av-

eraging over the version space, similar to the marginalisation

over version space which takes place in the Gaussian process

classifier. A crucial difference is that in the GPC, each possible

model is weighted by its likelihood, and in Random Forests

each tree is weighted equally. However, these trees are care-

fully selected to separate the chosen subset of training data,

so this biasing is in a sense a {0,1} weighting. This could

be thought of as sampling 500 decision boundaries from the

shaded region in Figure 2b and taking an expectation over

their responses. This suggests that they should behave in a

more introspective manner than the other single-discriminant

frameworks like LogitBoost and the SVMs, but perhaps a more

sensitively weighted combination of the trees could perform

better.

F. Kernel Types

Evaluation of the discriminant function for an SVM and the

covariance matrix for GPC inference both require the speci-

fication of a kernel function, k(·, ·). A rich body of literature

exists on different choices of kernels for both frameworks.

However, since our focus here is on a like-for-like compar-

ison of different classification frameworks we choose two

representative kernels rather than performing exhaustive model

selection to optimise performance for a particular application.

Firstly, as an example of the simplest kernel function available,

we consider the linear kernel defined as

kLIN(xi,x j) = xT
i x j+ r, (13)

where r is a constant real number. The linear kernel is an

apt choice where a linear separation of the data in feature

space leads to adequate performance or where computational

efficiency is of the essence. Often, however, a more sophis-

ticated, non-linear kernel is required. In this category we

use the squared exponential (SE) function as a canonical

representative. The SE kernel with length scale parameter l

is defined as

kS E(xi,x j) = exp

(

−
1

2l2
||xi−x j||

2
)

. (14)

In the context of an SVM, the SE function is more com-

monly known as a radial basis function (RBF).

V. Experimental Results

Our experiments investigate the introspective capacity of

the classifiers introduced in Section IV in settings relating

to autonomous driving. Specifically, we focus on two tasks:

the classification of cropped images of road signs, and the

detection of a salient class against a broad background class.

For the detection case, we repeat our experiments across

the three data sets detailed in Section V-A, which together

contain traffic lights, cars, and pedestrians. In investigating

both classification and detection we aim to address the full

spectrum of applications commonly encountered in robotics.

Classification addresses the case where a decision is made

between two, well-defined classes (e.g. two types of traffic

signs). We investigate classifier performance when a third,

previously unseen class is presented. The detection case is

arguably more commonplace, where a single class is separated

from a broad (in terms of intra-class variation) background

class (which is relevant in semantic mapping or detection).

Here, the concept of a previously unseen class does not exist

explicitly: the inherent assumption is that the data representing

the background class capture any non-class object likely to

be encountered. In practice this is rarely true, leading to a

significant number of novel instances which often result in

misclassification. While it could be argued that this issue

is ameliorated somewhat by expanding the dataset used for

training, we propose that the complexity of the feature space

encountered during persistent, long-term autonomy will keep

perplexing even the most expansively trained classifiers.

We then apply a decision-making process to the classifiers

trained for detection, and show how the quality of each
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roadworks ahead right ahead stop keep left

(1500) (688) (780) (298)

lorries prohibited speed limit yield

(420) (1980) (2159)

TABLE I: The seven classes of the German Traffic Sign

Recognition Benchmark (GTSRB) dataset considered in our

work. The numbers in brackets indicate the number of data

available per class.

classifier’s decisions change depending on the values chosen

for the cost function.

We finish by examining the uncertainty with which each

classifier makes errors, and compare the idealised drawings

from Figure 4 to the real curves generated from each of the

three data sets.

A. Datasets

In order to demonstrate the consistency of the introspective

capacities of the various frameworks, we evaluate our experi-

ments on several commonly-used data sets which encompass

several domains of robotics, namely the detection of various

key classes on the road.

1) Traffic Lights Recognition: the Traffic Lights Recogni-

tion (TLR) dataset [of Mines ParisTech, 2010] is a sequence

of colour images taken by a monocular camera from a car

driving through central Paris. The TLR dataset comprises just

over 11,000 frames, in which most of the traffic lights have

been labelled with bounding boxes and further metadata such

as the status of the signal or whether a particular label is am-

biguous (e.g. the image suffers from motion blur, the scale is

inappropriate, or a traffic light is facing the wrong way). A few

traffic lights have been omitted altogether. As recommended

by the authors, we exclude from our experiments any labels of

class ambiguous or yellow signal and any instances which are

partially occluded. We split the dataset into two parts (at frame

7,200 of 11,178), with an approximately equal number of

remaining labels in each part and with no physical traffic lights

in common. Positive data are extracted as labelled. Negative

background data are extracted by sampling patches of random

size and position from scenes in the dataset while ensuring

that the patches do not overlap with positive instances.

2) GTSRB: The German Traffic Sign Recognition Bench-

mark dataset [Stallkamp et al., 2012] comprises over 50,000

loosely-cropped images of 42 classes of road signs, with

associated bounding boxes and class labels. From this dataset

we specifically focus on the seven classes shown in Table I.

The images are resized according to the parameters in Table II,

and then we use the Torralba features from Section V-B for

classification.

Parameter TLR GTSRB DP KITTI

Cropped image height 30 32 96 26
Cropped image width 12 32 48 32
HOG cell size n/a n/a 10 10
N. of orientations n/a n/a 5 6
Final feature dimension 200 200 950 198

TABLE II: The parameters for the features for the TLR and

GTSRB (using Torralba features) and the DP and KITTI data

sets (using HOG features).

3) Daimler Pedestrian: The examples we use come from

the Daimler multi-cue occluded Pedestrian data set (DP) [En-

zweiler et al., 2010], and we use the non-occluded monocular

intensity images. There are over 52,000 positive and 32,000

negative examples split into training and test sets. The images

are resized according to the parameters in Table II, and then

we use the HOG features from Section V-B for classification.

4) KITTI: The KITTI data set [Geiger et al., 2012] com-

prises over 7,400 non-sequential colour images from a camera

pointing out from the front of a car driving through a German

city. The images come with ground truth information for

vehicles, with up to 15 in each frame. The images are cropped

and resized according to the parameters in Table II, and then

we use the HOG features from Section V-B for classification.

B. Features

A rich body of work on the detection and classification of

road signs and traffic lights has established a successful track

record of template-based features for this purpose. Specifically,

we leverage the approach proposed by Torralba et al. [2007] in

which a dictionary of partial templates is constructed, against

which test instances are matched. A single feature consists of

an image patch (ranging in size from 8×8 to 14×14 pixels)

and its location within the object as indicated by a binary mask

(h×w pixels according to Table II). For any given test instance,

the normalised cross-correlation is computed for each feature

in the dictionary. Therefore, per instance (or window, in the

detection case) a feature vector of length d is obtained, where

d is the size of the dictionary. We found empirically that d >

200 leads to negligible performance increase in classification.

Throughout our experiments we therefore set d = 200.

For the Daimler Pedestrian and KITTI data sets, we have

chosen to use Histogram of Oriented Gradients (HOG) [Dalal

and Triggs, 2005] features because the classes in question

(pedestrians and cars, respectively) have much greater varia-

tion than traffic lights, and so a gradient-based feature method

performs better than a template matching-based method, which

is more appropriate for classes with consistent appearance. We

use the implementation in vlfeat [Vedaldi and Fulkerson, 2010]

and use parameters as detailed in Table II.

C. Introspection in Classification

This section investigates classification output when the clas-

sifiers are trained on two classes, and then a third, previously

unseen class is presented to the classifier. This is an important

experiment because classifiers deployed in real-world appli-

cations will encounter images which do not closely resemble



10

Training data Test data

Data set Positives Negatives Positives Negatives

TLR 250 500 1000 2500
DP 250 500 8000 16000
KITTI 200 500 2000 5000

TABLE III: The number of training and test data of each

class used for the detection experiments. The quantities of data

from the GTSRB data set for the classification experiments are

detailed in Section V-C.

Classifier Precision Recall F1

IVM 1.000 1.000 1.000
Non-linear GPC 1.000 1.000 1.000
Linear GPC 1.000 1.000 1.000
Non-linear SVM 1.000 1.000 1.000
Linear SVM 1.000 1.000 1.000
LogitBoost 1.000 1.000 1.000
Random Forest 1.000 1.000 1.000

TABLE IV: The classification performance when separating

stop sign from the lorries prohibited signs from the GTSRB

data set. Note that different class combinations were found to

yield classifiers of similar quality.

the data used to train them, and an introspective classifier will

respond to these with high uncertainty. As examples of classes

typically encountered in autonomous driving applications we

use a subset of the GTSRB dataset (see Section V-A2).

We arbitrarily select two classes for training: stop and lor-

ries prohibited. To investigate the efficacy of the features used

and training procedures employed, classifiers were trained

separating these two classes using a balanced training set of

400 data (200 per class). Classifier performance was evaluated

using standard metrics on a hold-out set of another 400 class

instances (200 of each class) of the same two classes. The

results are shown in Table IV, and show that classification

performance by the commonly-used metrics (precision, re-

call, and F1 measure) is commensurate across all classifiers.

The corresponding precision-recall curve confirms the perfect

separation of the classes and has been omitted here as it is

otherwise uninformative. The classifiers are then tested on 200

instances of previously unseen classes roadworks ahead, keep

left, 70kph, yield, and right ahead. The normalised entropy

histograms for both the seen and the unseen test classes are

shown in Figure 5. All classifiers are confident when tested

on classes which were present in the training set, which is

what we would expect. For the unseen test classes, the mean

normalised entropies for the GPC-based classifiers (IVM, non-

linear GPC, and linear GPC) and the Random Forests are more

consistently high than those of the other classification frame-

works, indicating that they reliably exhibit greater uncertainty

in their judgement. Conversely, the LogitBoost classifier is

extremely confident in all of its classifications with a very

narrow distribution, and the non-linear and linear SVMs have

inconsistent levels of uncertainty. These are effects consistently

observed throughout our experiments, which we attribute to

the manner in which the probabilities are estimated (as detailed

in Section IV). The unseen sign for which the classifiers

respond with the lowest uncertainty (greatest confidence) is

the 70 kph sign. We propose that this is due to its similarity

with one of the training classes, namely the ‘lorries prohibited’

sign.

In order to mitigate any influences of the specific training

and test data selected we repeated the above experiment

across a number of random dictionaries, data samples, and

unseen classes. Specifically, for each of five different unseen

classes, we perform forty iterations of classifier training and

testing with a random dictionary and training and test datasets

resampled for each run. The results, presented in Table V,

are consistent with those in Figure 5 in that the GPCs and

Random Forest tend to be more consistently uncertain for

the unseen test classes, while SVM and LogitBoost are more

confident with an often significantly narrower distribution of

normalised entropy values. The results in Table V indicate

that the gap in uncertainty between the different frameworks is

more pronounced for some unseen classes than for others. We

attribute this to the varying degree of similarity in feature space

between some unseen class and the classes in the training set.

We draw the conclusion that when faced with test data

which are not represented by the training data, the GPC-based

classifiers and Random Forest are more consistently uncertain

than the other classifiers, which is the introspective behaviour

we seek.

D. Introspection in Detection

We investigate the same classification frameworks as before

on various detection tasks, which each have a salient positive

class and a broad background class. We evaluate the classifiers

on three data sets: TLR (traffic lights), Daimler Pedestrian, and

KITTI (cars), as detailed in Section V-A.

As with the classification task, we first verify the efficacy

of the features selected and the training procedures employed.

Table VI shows the classification performance for classifiers

trained using the number of data shown in Table III. We

have chosen these values for two reasons. Firstly, we are

trying to highlight low-probability catastrophic events, which

will be few in number for the size of the test sets we are

considering here, but over the life-long autonomy we envisage

for our robots will occur in non-negligible numbers; larger

training sets reduce the prevalence of these low-probability

events, but will never be able to eliminate them. Secondly,

we are using off-the-shelf implementations of commonly-used

classification frameworks to keep the comparisons fair, We

note that in autonomous driving scenarios we typically see

more negative examples than positive examples, and so have

kept the training and test sets roughly to the same 1:2 ratio

of positives to negatives. While scanning an entire urban

scene for pedestrians is likely to yield many thousands more

negatives than positives, it is common [Enzweiler et al., 2012,

Fairfield and Urmson, 2011] to use 3D information or prior

maps to greatly reduce the portion of each image that needs to

be scanned, and thus making the ratio of positive to negative

windows much more even.

Figure 6 shows the corresponding precision-recall curves

for the classifiers across the data sets. The detection task,

having a varied background class and greater variation within

the positive class, is more challenging than the classification
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Fig. 5: Normalised entropy histograms (frequency vs NE) of the marginal probabilities for a variety of classifiers trained on

the road sign classes stop and lorries prohibited and tested on not only the training classes, but also classes which do not

appear in the training set (roadworks ahead, keep left, 70kph, and right ahead). Higher values for normalised entropy imply

more uncertainty in classifier output, so we expect the more introspective classifiers to be certain (low NE, left-hand end of

the x-axis) on the trained classes and uncertain (high NE, right-hand end of the x-axis) for the unseen classes.
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Test Class Classifier Normalised Entropy

µ± std. err. σ± std. err.

IVM 0.776 ± 0.081 0.145 ± 0.030
Non-linear GPC 0.751 ± 0.087 0.152 ± 0.029
Linear GPC 0.776 ± 0.108 0.150 ± 0.041
Non-linear SVM 0.476 ± 0.101 0.089 ± 0.056
Linear SVM 0.664 ± 0.122 0.250 ± 0.041
LogitBoost 0.019 ± 0.025 0.041 ± 0.073
Random Forest 0.756 ± 0.137 0.149 ± 0.053

IVM 0.794 ± 0.117 0.106 ± 0.026
Non-linear GPC 0.779 ± 0.124 0.107 ± 0.024
Linear GPC 0.777 ± 0.202 0.124 ± 0.058
Non-linear SVM 0.537 ± 0.126 0.028 ± 0.036
Linear SVM 0.494 ± 0.239 0.222 ± 0.049
LogitBoost 0.016 ± 0.022 0.031 ± 0.059
Random Forest 0.736 ± 0.166 0.078 ± 0.027

IVM 0.539 ± 0.140 0.173 ± 0.023
Non-linear GPC 0.546 ± 0.144 0.168 ± 0.023
Linear GPC 0.569 ± 0.166 0.177 ± 0.026
Non-linear SVM 0.407 ± 0.077 0.076 ± 0.053
Linear SVM 0.315 ± 0.195 0.197 ± 0.058
LogitBoost 0.008 ± 0.004 0.012 ± 0.026
Random Forest 0.394 ± 0.121 0.138 ± 0.029

IVM 0.579 ± 0.133 0.137 ± 0.020
Non-linear GPC 0.577 ± 0.130 0.136 ± 0.019
Linear GPC 0.585 ± 0.188 0.151 ± 0.029
Non-linear SVM 0.488 ± 0.111 0.039 ± 0.034
Linear SVM 0.177 ± 0.127 0.155 ± 0.056
LogitBoost 0.014 ± 0.019 0.030 ± 0.056
Random Forest 0.668 ± 0.161 0.113 ± 0.027

IVM 0.931 ± 0.025 0.080 ± 0.026
Non-linear GPC 0.934 ± 0.021 0.079 ± 0.023
Linear GPC 0.925 ± 0.031 0.085 ± 0.027
Non-linear SVM 0.641 ± 0.168 0.100 ± 0.047
Linear SVM 0.705 ± 0.142 0.212 ± 0.049
LogitBoost 0.059 ± 0.103 0.077 ± 0.127
Random Forest 0.904 ± 0.089 0.088 ± 0.043

TABLE V: Mean and standard deviation of normalised

entropies (including standard errors) from 40 iterations of

classifier training and testing, each with a randomly created

dictionary and both training and test datasets resampled.

Results are presented for classifiers trained on the road sign

classes stop and lorries prohibited and tested on five different

unseen classes as shown.

task. Classification performance according to the conventional

metrics is commensurate across all frameworks. The Random

Forest performs best for the TLR data set, and the non-linear

SVM and IVM perform consistently highly in the Daimler

Pedestrian and KITTI data sets. The GPC-based classifiers

all have commensurate performance in terms of precision and

recall.

In Figures 7, 8, and 9 we demonstrate how the lack

of introspection can impact classification performance when

accept/reject decisions are determined by classification confi-

dence, with one figure per data set. Specifically, we show the

cumulative effect of accepting classifications below a given

uncertainty threshold. First we note that when classifications

are accepted at any level of uncertainty (i.e. up to and including

unity normalised entropy) we get values which correspond

to those in Table VI. It is desirable for a classifier to be

close to the top left hand corner of the graphs pertaining to

true classifications (top row) and close to the bottom right

of the graphs pertaining to false classifications (bottom row).

This would correspond to making true classifications with low

uncertainty (high confidence) and making incorrect decisions

with high uncertainty.

Although the SVMs and LogitBoost classifiers generally

make true positive and true negative classifications with higher

certainty (i.e. low normalised entropy) than for the GPC

variants, they are also more confident when making mistakes.

This balance is discussed in more detail in Section VI, but in

summary we consider the avoidance of high-confidence errors

to be of primary importance, and after that, an increase in

classifications which are both confident and true results in a

more useful classifier.

The GPC-based classifiers (IVM, non-linear and linear

GPCs) behave very similarly to each other particularly in

the TLR and Daimler Pedestrian data sets, and perform very

well in terms of making mistakes with very high uncertainty.

The price paid for this more realistic assessment of the clas-

sification confidence is a reduction in correct classifications

above the normalised entropy threshold. Note that this does

not mean that subsequent samples are misclassified. It only

implies that some other remedial action might be taken —

for example obtaining label confirmation from a human or

gathering otherwise additional data to aid disambiguation.

The Random Forest is consistently uncertain in terms of all

four decision outcomes across all data sets. This is because the

probabilities it outputs are rarely far from p(C2)= 0.5. The fact

that it performs rather well in terms of accuracy, precision and

recall indicates that it is under confident.

The difficulties of the data sets clearly vary from the PR

curves and the confidences of the true detections, with TLR

being the easiest, followed by Daimler Pedestrian data set, and

then KITTI being the most challenging. This is likely to be

a result of the variation within the positive class paired with

the low number of positive exemplars in the training set (see

Table III).

E. Decision Making

In Section III-C we discussed the importance of the loss

function L(a,Ci) and how it shapes the decision of which

action a to choose, given some estimates of the state of the

environment {p(C1), . . . , p(C|C|)}. In robotics, we seek classifi-

cation frameworks which allow our robots to make decisions

which are faithful to the values instilled by the losses incurred

for particular outcomes. For instance, if we make the cost

associated with a particular outcome very large, then the

actions which can lead to that outcome should be chosen

more infrequently, or at least only when the classifier gives

a very confident estimate of the state of the environment. The

behaviour we seek is for classifiers to behave appropriately

given any relative costs associated with the possible outcomes.

We characterise this ‘appropriateness’ by comparing the total

cost incurred when using each classifier as part of the decision-

making pipeline, and we do so while varying the ratio of

the costs of false positive and false negative outcomes. Note

that we cannot mitigate the dangerous tendencies of less

introspective classifiers by adjusting the costs; each decision is

made by weighting the probabilities produced by a particular

framework, and thus if the probabilities are a poor indicator
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TLR Daimler Pedestrian KITTI

Classifier Precision Recall F1 Precision Recall F1 Precision Recall F1

IVM 0.995 0.916 0.954 0.953 0.872 0.911 0.868 0.725 0.790

Non-linear GPC 0.992 0.912 0.950 0.956 0.874 0.913 0.853 0.735 0.790

Linear GPC 0.988 0.899 0.941 0.956 0.875 0.914 0.816 0.708 0.758

Non-linear SVM 0.996 0.920 0.956 0.959 0.869 0.912 0.836 0.749 0.790

Linear SVM 0.967 0.910 0.938 0.932 0.876 0.903 0.813 0.709 0.757

LogitBoost 0.978 0.908 0.942 0.961 0.794 0.869 0.826 0.681 0.747

Random Forest 1.000 0.897 0.946 0.984 0.598 0.744 0.894 0.551 0.682

TABLE VI: The classifiers’ performances for the detection tasks across data sets according to conventional metrics. Precision,

recall, and F-measure are calculated by thresholding the classifiers’ probabilities at 0.5. The SVMs and GPCs give very similar

results across the data sets, with the Logitboost and Random Forest performing slightly worse than the others with the more

difficult data sets.
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Fig. 6: Precision-recall curves for the (a) TLR, (b) Daimler Pedestrian and (c) KITTI data sets. Note the increasing difficulty

of the data sets, and the consistency and commensurate nature of the classifiers in terms of these metrics. (Best viewed in

colour.)

of the truth of the classification, wrong decisions will be made

regardless of the costs set.

For each of the three data sets, we use the probabilistic

output of the classifiers to drive the decision-making pipeline,

and evaluate the decisions made. We set the costs of true

positive and true negative outcomes as 0, and the cost of a

false positive outcome as 1. The value for the last outcome,

the false negative or missed pedestrian, is varied from 1 to 107.

This cost of the false negative error appears on the x-axes of

Figures 10, 11, and 12. The y-axis of the left-hand figure in

each pair denotes the number of true outcomes (both positive

and negative together), and the y-axis of the right-hand figure

denotes the total cost of all the decisions made.

These pairs of graphs demonstrate the trade-off between

classifiers which avoid catastrophic decisions, and those which

might be so cautious that they never take the higher-risk

action. The left-hand graphs demonstrate the rate at which the

classifiers’ decisions become more and more cautious as the

cost of a false negative increases. We do not consider one to

be superior to another in terms of introspection, albeit it may

tell you about the usefulness of that classifier. On the right

hand graphs, the ideal is for a curve to be as low as possible

(close to the x-axis). This would represent a classifier which

makes good decisions given any particular cost ratio.

In Section III-C we described another way to characterise

the introspective tendencies of a classifier: by examining the

distribution of errors across p(C2). In Figure 4 we showed

that the number of cumulative errors as you increase the half-

length of the orange box (from Figure 4d) from 0 to 0.5

can take various shapes, and we showed the shape induced

by a more introspective classifier in teal (in Figure 4e). In

Figure 13 we show those curves for our classifiers across the

three data sets. Comparing it to Figure 4e, we see that for all

three data sets, the curves for the classifiers which consider

multiple discriminants (Random Forests and the GPC-based

classifiers) are closer to the desirable teal curve than the

single-discriminant classifiers (the SVMs and LogitBoost).

The Random Forest very strongly resembles the teal curve

across all data sets, and in the case of the KITTI data set

the IVM does also. This is a further, strong indication of the

introspective power of the Random Forests and GPC-based

classifiers over the others.

VI. Discussion

To what degree is introspection a property of a single clas-

sifier, or of a classification framework? Can one SVM be more

introspective than another SVM? Are GPCs invariably more
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Fig. 7: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives)

against normalised entropy. The classifiers have been trained on 250 traffic lights against 500 background patches, and tested

on 1,000 instances of traffic lights and 2,500 background patches. Note that lower normalised entropy implies more certainty

in classification. A more introspective classifier is one that simultaneously exhibits higher uncertainty (as witnessed by larger

normalised entropy in its output) when processing difficult instances and is more confident when it is correct. Consequently,

class decisions above a given normalised entropy threshold are deferred since the output is deemed ambiguous. This is desirable

since a single bad decision can have disastrous consequences. (Best viewed in colour.)

introspective than SVMs? The results in this paper indicate

a consistent behaviour of particular classification frameworks

across particular tasks (such as classification or detection),

which we attribute to the manner in which the classifiers are

designed (see Section IV). Thus we expect that introspection

quality is inherent to classification frameworks rather than

individual classifiers.

That said, varying the choice of kernel (and its parameters)

do produce very different behaviours, and it may be possible

to instil an improved introspective sense with an appropriate

choice of kernel. The reason for this is that in every framework

there is a link between classification confidence and distance

in kernel space. In the GPC, a test datum which lies far away

from the training data (in kernel space) yields a more uncertain

classification. But how can we guarantee that new, unseen

classes will be far away from our training data? In truth,

we cannot. We can only hope that the kernel has found a

warping of the feature space which adequately separates the

two classes of training data, and that new, unseen classes will

be sufficiently disparate from the training data in kernel space

to yield an uncertain classification. Owing to the opaque nature

of the kernel function, we cannot assume that points which

are close together in feature space will also be close in kernel

space. This brings into question the sanity of using distance

in kernel space as a metric for uncertainty in classification.

It should be noted that the sparse nature of the IVM could

be expected to reduce its introspective capabilities at the

expense of computational efficiency, when in fact it seems

to outperform the non-linear GPC in many cases. We attribute

this to the fact that the two implementations are from different

libraries and it is likely that the optimisation procedures in the

IVM are superior to those in the GPC, resulting in a better

choice of hyper parameters and thus a more effective sense of

how distance should relate to uncertainty.

In this paper we have investigated a variety of applications,

feature types, class types and quantities, as well as the nuances

between classification and detection. This is because it is not

always possible to determine the introspective quality of a

classification framework based on a single classifier and test

set. Can we say whether a classifier which is uncertain about

all decisions like the Random Forest is introspective or not?

We suggest that it is perhaps introspective, but certainly not

as useful as one which can also make correct classifications

confidently. A very introspective classifier will have a strong

correlation between confidence and correctness. Some situa-

tions, such as when a classifier is uncertain about everything,

do not yield enough information to determine a classifier’s

introspective capacity. Another such situation is where a
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Fig. 8: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives)

against normalised entropy (uncertainty), using the Daimler Pedestrian data set. The classifiers are trained on 250 and 500

instances of pedestrians and background respectively, and are tested on 8,000 and 16,000 of those classes. See the caption for

Figure 7 for more detail. (Best viewed in colour.)

classifier gives perfect classification results. Without errors,

we cannot judge how a classifier deals with the unexpected

(unless we evaluate it on truly alien data, such as in the unseen

class experiment of Section V-C).

We have motivated the desire for a classifier to make

mistakes with high uncertainty, and we have shown that if this

is not the case, it will make unpredictable and expensive errors.

In addition, for the classifier to be useful, we would also like

its true classifications to be made with high confidence. All

the classifiers we have investigated in this work have fallen

short of both targets, but to varying degrees. If we cannot

have both, is there a trade-off to be struck, and are some

combinations more desirable than others? One difficulty lies

in formally defining how a ‘perfectly introspective’ classifier

should behave. We have approached this in terms of increased

distance between training and test data leading to uncertainty,

and that the degree of uncertainty should indicate the likeli-

hood of a mistake being made. More rigidly, we propose that

classifications with an uncertainty of 0.9 should be incorrect

by one mistake in ten, on average. If this were true, we could

make very well informed decisions.

Although we have found that the GPC-based classifiers

exhibit a greater introspective quality than the other classifiers

tested in this work, it must be said that they are still far

from perfectly introspective, regardless of our choice of the

definition of ‘perfect’. One obvious point of improvement for

the Random Forest is that it is very under-confident when

it makes true classifications, which is also a feature of the

GPC-based classifiers, although to a much lesser extent. It is

interesting to note that IVMs with a successively higher active-

set-fraction q get more and more confident, both in terms of

true and false classifications, so it may be possible to improve

them by simply training them on more data. If an introspective

classifier’s predictions all have high uncertainty, this could be a

useful sign that the problem is too complex and more training

data are required.

VII. Conclusions

This work demonstrates how performance metrics tradi-

tionally used in machine learning for classifier training and

evaluation may be insufficient to characterise system perfor-

mance in a robotics context, where a single misjudgement can

have disastrous consequences. To remedy this shortcoming,

we propose the concept of introspection: the ability to miti-

gate potentially overconfident classifications by an appropriate

assessment of predictive variance. Our experimental results

imply that, despite commensurate performance as measured

by more conventional metrics, GPC-based classifiers pos-

sess a more pronounced introspective capacity than other

classification frameworks commonly employed in robotics,

maintaining a useful balance between being confident when

they are correct, and uncertain when they are making mistakes.

We attribute this to their consideration of distance between

data, and accounting for predictive variance over the space
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Fig. 9: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives)

against normalised entropy (uncertainty), using the KITTI data set. The classifiers are trained on 200 and 500 instances of

pedestrians and background respectively, and are tested on 2,000 and 5,000 of those classes. See the caption for Figure 7 for

more detail. (Best viewed in colour.)

of feasible classification models. This is in contrast to other

commonly employed classification frameworks which often

only consider a one-shot (ML or MAP) solution. As a result

of this, model-averaging classifiers make better decisions than

single-discriminant classifiers like SVMs, and thus will cause

fewer catastrophic accidents despite appearing worse in terms

of F-measure.
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Corrigendum: Introspective Classification

for Robot Perception
Hugo Grimmett Rudolph Triebel Rohan Paul Ingmar Posner

I. Introduction

The authors wish to revise of the conclusions drawn in

Section V of the original paper [Grimmett et al., 2016] in

light of a recently emerged peculiarity of the probabilistic

calibration. Due to particular choices of optimisation bounds,

the SVMs never return probabilities (or henceforth in the

corrigendum, measurements z) in the range [ǫ,0.0025], where

ǫ < 10−6. Some of the measurements which should be made

within this range are moved to a point less than ǫ, and thus

an incorrect decision may appear more confident, and incur a

greater cost.

This finding explains the flat sections in the left-hand

graphs of Figures 10, 11, and 12 in the original paper. The

rapidly increasing nature of the SVMs on the right-hand

graphs indicated that they were accruing a cost due to high-

confidence false negative errors. This behaviour can now be

partly attributed to this probabilistic calibration, although we

will see that the SVMs continue to produce some catastrophic

mistakes. In this corrigendum we have changed the bounds

of the optimisation, thereby removing this ‘blind spot’, and

allowing the SVMs to make better decisions.

The authors wish to point out that while this affects Figures

1, 10, 11, and 12 (replaced by Figure 5 below), the changes

only affect the most confident of decisions, and so the concept

of introspection, the reasoning behind it, and any conclusions

up to that point are unaffected.

In the remainder of this corrigendum we present updated

results and conclusions, and contextualise these against two

idealised classifiers which clearly demonstrate the effects of

introspection in decision making. The idealised classifiers,

detailed in the next section, extend the idea of the ideal

introspective classifier introduced in Figure 4 of the original

paper.

We confirm that introspection in decision making is crucial,

and that there are differences in the introspective capacities of

the real classifiers benchmarked as part of this study. However,

we newly conclude that these differences are not sufficient to

consistently affect their decision-making abilities in the high-

confidence decision-making experiment presented.

II. Idealised Classifiers

In Figures 4a-c of the original paper we demonstrate the

merit of making mistakes with high uncertainty. Instead of

considering the error functions in Figure 4a, let us consider

two new idealised classifiers, each defined by a pair of

probability density functions f1(z) and f2(z). These two density

functions define the response of a classifiers for each of two
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Fig. 1: The probability density functions which define two

idealised classifiers, called uniform and optimal. (a) shows the

distribution of the measurement z which classifiers give for

the background class, and (b) shows the same for the positive

class (e.g. foreground). These two pairs of probability density

functions are chosen because they generate the error functions

in Figure 2 for balanced data sets. We draw samples from

these distributions to simulate the classifiers’ behaviours.

classes (with f1(z) for class C1, etc), and are shown in Figure

1 of this corrigendum.

We define making an error as either returning a measure-

ment z < 0.5 for an instance of the positive class, or returning

a measurement z > 0.5 for an instance of the negative class.

If we plot the probability of error given the measurement

z for these two classifiers applied to a balanced data set,

shown in Figure 2, we see that the uniform classifier does not

correlate confidence with correctness, because it has the same

probability of error whatever the value of z, and thus is not

introspective. In contrast, the optimal classifier makes mistakes

only with high uncertainty (in the region around z = 0.5).

This correlation between correctness and confidence makes

the optimal classifier more introspective than the uniform

classifier.

We note that the expected error rate is p(e) = 0.25 for both

classifiers, and that the difference in their behaviour arises only

from where in the range of z they make mistakes.

Considering these two classifiers to be at opposing ends of a

spectrum, where one is indifferent to uncertainty (the uniform

classifier) and one is always correct below a given uncertainty

threshold (the optimal classifier), we can compare them with

the real classifiers.

For the results in this corrigendum, we simulate the idealised

classifiers’ responses to 5,000 negative examples and 2,000

positive examples by drawing them from f1(z) and f2(z),

respectively. This process is repeated ten times. These numbers

are chosen to be consistent with the experiments conducted on
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Fig. 2: The likelihood of making an error given some measure-

ment z (or error function) for two idealised classifiers, given by

Figure 1. The uniform classifier is non-introspective because

the likelihood of error is not correlated with classification

confidence HN(z) (see (4) from the original paper), and thus is

not introspective. The optimal classifier has the same overall

error rate, but makes all of its mistakes with high uncertainty,

and is therefore more introspective.

real classifiers in the original paper and below.

III. Results

In Figure 3 we show the number of each type of outcome

(true positives and negatives, false positives and negatives)

for the decisions made with confidence greater than a given

threshold, this time for the idealised classifiers. The intuition

here is that if we have an additional safe action such as waiting

and gathering more data or asking a human for guidance, we

might use it for all test data that the robot perceives to be

above a certain threshold of uncertainty. In that case, we are

looking at how many correct and incorrect classifications (and

therefore decisions) the robot considered safe.

Figure 3 complements Figures 7, 8, and 9 in the original

paper, and serves as comparison between real and idealised

classifiers. Note how all the real classifiers, with the exception

of the random forest, are more confident about both true and

false outcomes than the optimal classifier up to an uncertainty

threshold of 0.8. Considering only the false outcomes (bot-

tom row), most real classifiers lie somewhere between the

two idealised classifiers, with the linear SVM and logitboost

being more similar to the less introspective uniform classifier.

Overall, the GPC-based classifiers are closest to the optimal

behaviour.

The revised graphs for the original Figures 10, 11, and 12

are shown in Figures 5a, 5b, and 5c of this corrigendum.

Notice that the SVM curves in pink and yellow on the

left-hand-side graphs are now smooth. Removing the ‘blind

spot’ in the SVM probabilities improves their high-confidence

decisions, particularly in the case of the non-linear SVM.

In Figure 5a we see that the decisions made by the linear

SVM are improved, but it still incurs higher costs than

all classifiers save logitboost. In Figure 5b the two SVMs

still make bad decisions, but not as catastrophically as in

the original paper. Figure 5c shows the same bad decisions

from the linear SVM as before, but as a result of including

more runs, we uncover some catastrophic decisions by the

linear GPC. Overall, each of the three linear classifiers makes

catastrophic decisions in at least one of the three data sets.

We show the high-confidence decision-making capabilities

of the idealised classifiers in Figure 5d. The uniform classifier

makes catastrophic mistakes much as the real classifiers do,

because it too is capable of making high-confidence errors.

The optimal classifier, however, incurs a lower (or equal) total

cost than the less introspective uniform classifier regardless of

the choice of cost ratio. The costs asymptote to the maximum

possible number of false positives, each worth a cost of 1. The

more introspective optimal classifier makes decisions which

are truer to the chosen loss function.

In Figure 4 we show the replacements for Figure 13 in

the original paper, with the addition of the comparison with

the idealised classifiers. This figure serves to show whether

errors are made with high uncertainty, as is desirable for

an introspective classifier. We see that the multi-discriminant

classifiers do make their mistakes with higher uncertainty than

the others in each of the three data sets, where the KITTI

data set is the most challenging. This is consistent with the

multi-discriminant GPC-based classifiers making poor high-

confidence decisions in the KITTI data set alone. The idealised

classifiers demonstrate that the single-discriminant classifiers

are overconfident relative to the non-introspective uniform

classifier.

Overall, no single real classifier behaves like the optimal

idealised classifier, avoiding all high-cost errors. The random

forest avoids high-cost errors only by being uncertain about

all decisions. These findings indicate that while the multi-

discriminant classifiers appear to be more introspective than

single-discriminant classifiers, none presented here are consis-

tently introspective across all three data sets and the differences

do not seem to make a tangible difference in decision making.

IV. Conclusions

The third-class experiment presented in the original paper

and extended here with the introduction of the idealised clas-

sifiers indicates that the multi-discriminant GPCs are slightly

more introspective than the SVMs, on the basis that the SVMs

are overconfident. However, the difference in behaviour in

the decision-making experiments is not overwhelming. No

real classifier benchmarked as part of this study is capable

of consistently avoiding catastrophic outcomes in all three

data sets presented. This could be due to contributory effects

which we do not control in this experiment, for instance the

probabilistic calibrations used and how they are trained, or the

choice of kernel. Evaluating the relevance of these factors is

a vein for further investigation.

The use of idealised classifiers serve as baselines for the

behaviour of the real classifiers. We find that most real

classifiers behave somewhere between the more introspective

optimal and the non-introspective uniform idealisations. In

Figure 4 the single-discriminant classifiers such as the SVMs

and logitboost appear to be more over-confident than the multi-

discriminant GPCs and random forests.

We conclude from the idealised classifiers that introspection

is crucial in decision making, but that none of the real
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Fig. 3: Idealised classifiers: cumulative frequency plots of clas-

sification confusion (true positives, true negatives, false posi-

tives, and false negatives) against classification uncertainty. A

more introspective classifier is one that simultaneously exhibits

higher uncertainty when processing difficult instances (bottom

right corner for false positives and negatives) and is more

confident when it is correct (top left corner for true positives

and negatives). Here we confirm that the optimal is the more

introspective of the two idealised classifiers. For each run,

the classifiers generated 2,000 positive and 5,000 negative

measurements. We show the mean and standard error over

10 independent runs.

classifiers benchmarked here are introspective enough to allow

them to avoid catastrophic decisions in all three data sets. The

benchmarking of other frameworks (e.g. deep architectures)

remains further work. In addition, we are also exploring the

notion of whether a framework can be designed or trained

specifically such that its introspective capacity is improved.
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Fig. 4: We show the proportion of errors made by a classifier

contained within a region around p(C2) = 0.5. The x-axis

shows the size of that region, the orange window as described

in Figure 4 of the original paper. To generate these curves, we

randomly sample 1,000 positive and 1,000 negative test data

and count the number of errors within a certain window. Note

that a classifier which is uncertain when it makes mistakes

will be closer to the top left of each plot. The random forest

performs very well in this respect, although it makes all

decisions with large uncertainty. This shows one side of the

introspective coin. We show the mean and standard error over

10 independent runs.
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(a) TLR - 1,000 positive and 2,500 negative test examples.
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(b) Daimler Pedestrian - 8,000 positive and 16,000 negative test examples.
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(c) KITTI - 2,000 positive and 5,000 negative test examples.
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(d) Idealised classifiers - 2,000 positive and 5,000 negative test examples.

Fig. 5: High-confidence decision making. The x-axes represent the cost of a false negative error (FN, e.g. missing a traffic

light, pedestrian, etc), while the cost of a false positive error (FP) is held at 1. On the left we show the number of correct

decisions made (positive and negative) as we vary the cost of a false negative, and on the right we show the total cost of all

decisions (correct decisions carry 0 cost). Ideal behaviour on the left is to smoothly become more conservative (which requires

making fewer correct decisions) as the cost increases, and on the right the ideal is to incur minimal total cost at every point

on the x-axis. We show the mean and standard error over 10 independent runs.


