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ABSTRACT

The Mars Utah Rover Field Investigation (MURFI) 2016
mission was a Mars Rover field analogue mission run by
the UK Space Agency (UKSA) in collaboration with the
Canadian Space Agency (CSA). MURFI consisted of a
“field team” at the Mars analogue site near Hanksville
(Utah, USA), and an “Operations Team” based in the
Mission Operations Centre (MOC) at UKSA’s Harwell
Campus (Oxfordshire, UK).

The Rover platform for the mission comprised the Ox-
ford Robotics Institute’s (ORI) ARC Q14 Space Rover
(Q14), and the mission provided a unique opportunity for
ORI to test the performance of several of their advanced
navigation and autonomous driving algorithms in realistic
planetary exploration conditions over a period of several
weeks (Figure 1). MURFI’s core objectives included a
realistic imitation of the first 10 sols of a possible future
Mars Rover mission.

Following completion of the core mission, the ORI Rover
team engaged in a series of ambitious trials and data gath-
ering scenarios based on ORI’s broad suite of navigation
and autonomy algorithms which have been developed pri-
marily for on-road terrestrial applications. The objectives
were to (i) assess the performance of these systems in
this radically different environment, (ii) determine what
systems modifications (if any) might be needed to op-
erate effectively in a typical planetary surface scenario,
and (iii) to identify which new capabilities these tech-
niques might bring to the field of planetary surface nav-
igation and exploration. The results of these trials were
very encouraging, showing good baseline performance of
the techniques deployed even though these had not been
modified in any way to reflect the change of environment,
and indicating several avenues for further exploration and
development of ORI’s techniques which could generate
substantial benefits for the Space community.

During the core mission, the Rover drives for each
sol were conducted autonomously using a single mast-
mounted stereo camera sensor. Waypoint files for the
planned drives were designed by the MOC, transmitted to
the field site, and uploaded to Q14 for autonomous execu-

tion using ORI’s OxfordVO visual odometry (VO) appli-
cation - the same application which forms the kernel of
the VO software for the forthcoming ExoMars mission.
The accuracy in following the planned drives during this
phase was highly satisfactory, with the Rover typically
finishing the drive within a few centimetres of the planned
location.

During the post-MURFI trials programme, the team im-
plemented ORI’s “Dub4” suite to provide “teach-and-
repeat” (T&R) functionality. Dub4 uses a single stereo
camera to create vision-based maps in highly unstruc-
tured environments which are then used to localise and
navigate autonomously. This facilitates safe, rapid re-
tracing of a previously driven path, enabling interesting
science sites subsequently identified through data analy-
sis to be rapidly revisited by the Rover. Accuracy in fol-
lowing the previously driven path was good despite large
areas of the driven environment being relatively feature-
less. The use of an affordable monocular camera as an
effective localisation sensor using the feature-rich desert
floor was investigated, with encouraging results. Data
was collected so that dense reconstructions of the terrain
around the rover can be generated in a future phase of
our work. This reconstruction capability has the poten-
tial to create an extremely powerful visualisation tool for
generating rich 3-D mesh representations to be utilised
by mission scientists to more effectively focus the sci-
ence effort. Future work will also concentrate on per-
formance enhancements by adapting existing ORI tech-
niques to the specifics of the planetary surface environ-
ment, and developing enhanced machine learning auton-
omy approaches along the path towards the implementa-
tion of a true “robot geologist”.

Key words: robots; rover; localisation; mapping; auton-
omy; teach-and-repeat.

1. INTRODUCTION

The MURFI mission was a rover field mission intended
to demonstrate the capability of the UKSA, in collabo-
ration with international partners including the CSA, to



Figure 1. The Q14 Rover and PANCAM emulator. The
PanCam is mounted at the top of the mast and can be
rotated through 360 degrees and angled up/down using a
mast mounted pan/tilt unit. The XB3 is the gold unit half
way up the mast, the LIDAR is just below, and and the
Grasshopper is mounted on the front of the rover platform
bed.

deploy an “ExoMars-like” rover analogue mission and
carry out a geologically-focused traverse of Mars-like ter-
rain. As part of the mission, ORI provided the Rover and
rover operations support team to the field location in the
Utah desert near Hanksville, as well as support to op-
erations in the MOC located at Harwell, UK. The mis-
sion had a number of scientific objectives and activities
which are described in more detail in [1]. In this paper,
we focus on rover operations carried out during both the
MURFI mission proper, and the subsequent post-mission
phase. This post-mission phase in particular provided an
excellent opportunity to deploy ORI’s suite of navigation
and autonomous driving techniques in a realistic plane-
tary analogue context.

2. THE ROVER

Figure 1 shows an image of the rover including the Pan-
Cam and navigation instruments.

2.1. Payload platform

The rover platform comprised a Q14 robot from Ad-
vanced Robotics Concepts (ARC). With active 4-wheel
steering and drive, and passive dynamic suspension sys-
tem, the rover provides a reasonable payload capacity and
good mobility over a range of terrains within a relatively
low mass package. The rover mass without payload is ap-
proximately 30kg and it can carry up to 40kg of payload.
For the MURFI mission activities, the 4-wheel steering
capability enabled the path planning exercise to be sim-
plified through construction of the paths as a series of
linear drives linked by point turns. 4-wheel steering also
means that wheel-slip is much reduced compared with
simpler differential steering platforms, reducing the im-
pact of the rover on the terrain and minimising track de-
position.

2.2. Navigation sensors

As seen in Figure 1, the primary navigation sensor
comprised a Point Grey Bumblebee XB3 stereo camera
mounted mid-way up a central mast fitted to the rover.
This was the sole sensor used for navigation during the
MURFI mission proper. In addition, the rover was fit-
ted with a Velodyne VLP-16 3-D LIDAR located just
below the XB3 camera and a Point Grey Grasshopper
wide-angle monocular camera facing forwards and look-
ing past the forward wheel set towards the terrain in
front of the rover. The LIDAR was used to gather data
for the forthcoming dense reconstruction exercises, and
the Grasshopper camera for single-camera navigation.
The platform was also fitted with a Lord Microstrain 3-
DM-GX4-45 inertial sensor, which was primarily utilised
for automatic logging of the platform orientation during
imaging sessions. All data from every sensor was rou-
tinely logged for subsequent analysis and evaluation.

2.3. Instrumentation

The overall instrumentation package was similar to that
planned for the ExoMars mission and comprised:

• The Aberystwyth University PanCam Emulator
(AUPE) [2] to simulate the ExoMars PanCam instru-
ment [3], and the High Resolution Camera (HRC)
emulator,

• A Digital SLR camera with macro lens, mounted to
simulate the ExoMars Close-up Imager (CLUPI [4])
range of motion and field-of-view,

• An ASD Inc. FieldSpec4 field reflectance spectrom-
eter to simulate the Infrared Spectrometer for Mars
Instrument (ISEM, [5]), and

• A Raman Spectrometer, the use of which on the final
drill-samples acquired would signify “mission suc-
cess”.

3. SURFACE NAVIGATION

3.1. MOC communication protocol

During the MURFI mission, the rover operated in limited
autonomy mode. The planned drive for the upcoming sol
cycle was dictated by the MOC team at Harwell, based
primarily on PanCam imagery taken during the drive on
the previous sol and uploaded from the rover to the MOC
at the end of the drive. Each drive was planned in coordi-
nates relative to the start point of the drive, corresponding
to the end point of the previous sol’s drive. The rover po-
sition and orientation was marked physically at the end of
each sol, the rover removed, and replaced on the follow-
ing sol in the exact same position ready for the drive. The



planned drive was described simply as the (x, y) coordi-
nates in metres relative to the start position of a series of
waypoints linked by point turns. The orientation at each
point turn was specified, including the goal orientation.
A text descriptor file was generated by the MOC, sent to
the field team, and uploaded to the rover.

3.2. Executing sol drives

When driving, the rover operated autonomously. To en-
sure the rover actually drove the planned track, the rover
utilised the XB3 stereo camera linked to OxfordVO [6],
which generated frame-by-frame estimates of Q14’s ego-
motion. This application has been selected as the VO
component for the forthcoming ExoMars mission, and is
described in more detail in [7].

Using a simple differential controller which calculated
the difference between the rover’s actual and planned
pose, corrections were generated to ensure the rover ad-
hered to the planned path. The system performance was
found to be excellent, with the actual position at the end
of each sol’s drive measured to be within just a few cen-
timetres of the planned position, and no problems were
experienced in meeting the MURFI mission rover drive
requirements.

4. TEACH-AND-REPEAT WITH DUB4

“Wherever, Whenever, Whatever the Weather” (Dub4) is
ORI’s state-of-the-art visual navigation system. In this
section we describe an approach where the rover is first
manually driven along a path (“teach”) and then subse-
quently drives that same path autonomously (“repeat”).
To do this, Dub4 consumes live images from a stereo
camera and compares them to a database of previously
recorded locations to determine the precise position of
the rover with respect to the “taught” path [8][9][10].

4.1. Mapping

The database is created during a first survey of the rover’s
route (an experience) by storing both visual snapshots of
the places that it sees and the relative coordinates (rota-
tion, translation) between these snapshots. As the rover
undertakes more drives, many more experiences of ei-
ther the same route or of different routes can be added
and fused together seamlessly in order to improve the
localisation performance of the rover, and this accumu-
lated database of information can then be used to lo-
calise the rover under a diversity of viewpoint, illumina-
tion, and weather conditions. The rover finds its position
along the route by first determining which visual snap-
shot (keyframe) matches best with what is currently ob-
served, and then computing a metric 6DoF pose relative
to that snapshot. The rover can then compute its rela-
tive position against any other snapshot recorded in the

database by examining the chain of stored poses between
snapshots [8][9][10].

First, the rover’s trajectory is estimated using VO
[11][12]: the current stereo image pair Ft is used to cre-
ate and store a bank of 3-D landmarks (SURF, BRIEF,
ORB), and a 6-Degree-of-Freedom (6DoF) transforma-
tion is computed between Ft and the previous stereo pair,
Ft−1. The 3-D landmarks and 6DoF poses between them
are stored in an “experience” graph G, with nodes com-
posed of 3-D landmarks and the 6DoF transforms saved
as edges between nodes (see Figure 2), under the as-
sumption that 6DoF transforms between nodes that are
close will be metrically accurate, while nodes that are
far away from each other will maintain only a topologi-
cal ordering [13][14][8]. At localisation time, landmarks
extracted from Ft are compared against the stored 3-D
landmarks, and a 6DoF transform is computed between
Ft and the experience frame Fexpi that best matches the
current frame.

4.2. Localisation

During localisation, the rover’s pose is encoded as a ref-
erence node Ni and a 6DoF transform TNi,Rt

between
the rover and this reference node. Localisation is a two-
step process: Firstly, large-scale localisation (so called
place-recognition) is done using FABMAP [15], which
detects loop-closures using image similarity and yields
a set of candidate nodes Ni that are most similar to the
live frame, without actually computing a pose relative to
any of those nodes. Secondly, local-scale metric local-
isation is performed on these candidate nodes, by solv-
ing for a 6DoF transform between each candidate node
and the live frame. Finally, Dub4 will output a 6DoF
transform with respect to the node that has the most in-
liers(correct landmark correspondences between the live
frame and the keyframe stored on the node).

4.3. Path memory

However, the number of nodes that need to be checked by
FABMAP will grow with each added experience, which
might become problematic, especially when running on
resource-constrained hardware such as a rover. Given
that localisation must run in real-time or near-real-time,
a naı̈ve approach would only be able to check a reduced
number of experience nodes before the next live frame
is fed into the system. To increase the probability of lo-
calisation success under these constraints, Dub4 uses a
ranking policy [8] which sorts the candidate experience
nodes by their distance to the current position estimate
obtained using VO. Additionally, Dub4 ranks candidate
nodes based on which experience is currently used for lo-
calisation, as it is likely that the same experience will be
used to localise in future frames. This probabilistic ap-
proach is further explained in [8] and [16].



Figure 2. DUB4 running on the Q14 rover. The lower left side shows the number of inliers (correct image correspondences
between the current frame and an experience keyframe). The right side of the figure shows the 3D landmark correspon-
dences between the current live frame and the experience keyframe, for grayscale and illumination-invariant transforms
of the original RGB images. The center of the figure shows the graph-like representation of a Dub4 experience, where
nodes represent keyframes, and edges represent 6DoF transforms between keyframes.

4.4. Illumination invariance

There are also instances where changes in illumination
result in localisation failure, especially in the case of
moving shadows. To bolster the robustness to such
changes, Dub4 uses an illumination invariant transform
of the input color images, similar to the method described
in [17].

4.5. Path-following

We have tested the applicability of Dub4 to Mars-like en-
vironments by simulating a full autonomy process. This
is a three-step exercise:

• The rover is manually driven around a predeter-
mined path several times, while recording full video
logs from the stereo camera mounted on its mast.
The rover operators attempt to follow exactly the
same route for each subsequent drive by using the
tracks left by the rover as a guide,

• Afterwards, an experience map is created using the
video log of the first manual drive,

• Finally, localisation and autonomy are simulated, by
using the additional video logs as simulated stereo
video input to Dub4.
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Figure 3. Path driven by the rover during the first simu-
lated autonomous run, with the experience map in green,
and the first simulated autonomous run in yellow, blue
and red.
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Figure 4. Lateral deviation histograms of the simulated autonomous runs from the reference experience map (not cumu-
lative). The horizontal axis represents the lateral deviation in metres. These results show that Dub4 is capable of closely
following the experience map, with most deviations within 0.5m.

4.6. Results

We benchmark Dub4’s suitability to Mars-like environ-
ments by computing the probability of running without
localisation for a certain distance. Figure 5 shows the
probability of running without localisation (in open-loop
mode) for the simulated autonomous runs. This sim-
ple metric is both readily humanly-understandable (and
should be read as: “the robot should travel no more than
X meters on dead-reckoning alone”) and a good way of
comparing the performance of different localisers.

The path driven by the rover is shown in Figure 3. The
green loop represents the experience map, which serves
as the T&R reference. The second loop (yellow, blue, and
red) represents a simulated autonomous run, and shows
sections of the route where Dub4 successfully accom-
plished localisation against the experience map (blue),
portions where localisation against the experience failed,
but the rover’s position was successfully estimated using
VO(yellow), and a short portion at the beginning of the
simulated autonomous run where Dub4 was unable to es-
timate the rover’s position (red).

The lateral deviation of the simulated autonomous runs
with respect to the experience map created from the first
run is shown in Figure 4. This visualisation is important
when determining the performance and accuracy of the
T&R system. The low deviations seen here would allow
the mission planners to design more intricate autonomous
traversals while maintaining rover safety.

Overall, Dub4 performed very well in a Mars-like envi-
ronment, showing a very low overall probability of losing
localisation. Future work could involve improving the in-

variance to changes in illumination and view-point, and
developing feature detectors that are better suited for en-
vironments with few distinct landmarks and textures. It
is important to note that Dub4 depends on stereoscopic
vision, demanding a strong calibration with increased de-
mand on computational resources to process sensor im-
agery and a heavier sensor payload when compared with
monocular vision systems.

5. SINGLE-CAMERA NAVIGATION

Dub4 and other experience-based navigation (EBN)
frameworks [16, 18, 19] are highly relevant to the rover
navigation problem, giving the rover access to a net-
work of reusable paths within which it can efficiently
localise, and upon which it can repeatedly expand as
it engages in forays into the world. Unlike state-of-
the-art T&R systems using stereo vision, an example of
which we described in Section 4, we developed in [20]
a light-weight, low-cost, and reduced-bandwidth alterna-
tive which exploits the planarity of imagery captured by
a single downward-facing camera. Here, odometric con-
straints are available by tracking the perceived texture of
the ground in front of the robot, and computing a simple
frame-to-frame homography.

5.1. Topometric graphs for navigation

Generalising the graph-based localisation problem, we
require the map nodes, Mi, to store data which is rep-
resentative of discrete and distinguishable places in the
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Figure 5. Probability of running without localisation (in
open-loop mode) for the simulated autonomous runs. The
horizontal axis represents the distance travelled in open-
loop. The vertical axis represents the probability of trav-
elling a certain distance in open-loop mode.

world (e.g. image, laser scan, etc). An edge between
nodes i and j must characterise a relationship between
places iφj . To search, we must be able to compose
the edge constraints iφk = iφj ⊕ jφk . . ., along a path
P = {iφj , jφk, . . .} in the database. Finally, to decide if
two places are close together, we need some symmetrical
metric |iφj | = |jφi| ≥ 0.

5.2. Frame-to-frame edge constraints

As the robot moves (from time k − 1 to k), it will ob-
serve a point of interest (in 3-D space) at slightly dif-
ferent image coordinates xk−1 and xk, due to its mo-
tion. If this point is on or near an approximately planar
surface, the image coordinates are related by a (3 × 3)
matrix (called a planar-induced homography) such that
xk = Hk,k−1xk−1. For every pair of frames that the
rover observes as it moves, we can estimate this homog-
raphy by iteratively discarding points not on the plane in
a RANSAC process [21]. Examples of these interesting
image pixels are shown in Figure 6, including many out-
liers (e.g. points on the horizon) that need to be filtered
by the estimation process.

5.3. Characterising places

Originally, we detected and matched interesting points
using speeded-up robust features (SURF) [22], due to its
robustness to viewpoint changes, and broad support in the

Figure 6. Sample imagery showing interesting features
(detected and described by SURF) on two subsequent im-
ages captured by the rover as it moves, and matches from
frame-to-frame

software community. However, this framework leaves the
designer free to choose place characterisation and con-
nectivity. Indeed, we have successfully integrated GPU
acceleration [23] and a fast binary descriptor [24].

5.4. Localisation

Having populated the database with an initial mapping
run, localisation is then achieved by optimising the met-
ric for “closeness” over the set of nodes in a modest
(in terms of total edges traversed) graph neighbourhood
M = {m | ρ−σ ≤ m ≤ ρ+σ} around the current pose,
ρ, which can be obtained by an arbitrary graph search al-
gorithm (e.g. breadth-first, depth-first). Candidates for
this metric may include a distance in homography-space
(see [25]), or the overlap of the two images when the ho-
mography is used to warp one of them.

5.5. Recovering motion

While localisation in this example is achieved purely in
the space of homographies, it is possible to recover the
rotation and (up-to-scale) translation, as the homogra-
phy decomposes to Hk,k−1 = Rk−1,k + 1

dtk−1,kn
πT .

For this, the intrinsic camera parameters (distortion, etc)
and a singular-value decomposition (SVD) are required
(see [26]). Furthermore, if the camera height is well cali-
brated, the absolute scale of the motion is available.

5.6. Experiments

We tested this system by repeatedly driving Q14 around
a highly textured and somewhat flat area near the MURFI
base. As shown in Figure 7(a), the greyscale imagery was
captured by a Point Grey Grasshopper monocular camera
at resolution 1036 × 1084. The camera’s intrinsics were
used to rectify images (Figure 7(b)) and was computed
using the OCamCalib toolbox [27]. The route was piloted
at regular intervals (8 traverses) over a period of 24 hours,
totalling approximately 800m. As such, the data present
us with variation in environmental appearance, predomi-
nantly due to the waxing and waning of available light as



(a) Greyscale imagery captured
by the fish-eye camera.

(b) Undistorted by applying the
camera intrinsics.

(c) Histogram equalisation can
remove specularities caused by
harsh glare.

Figure 7. Sample imagery from the downward-facing
Grasshopper mounted on Q14, as well as examples of
simple preprocessing steps taken to ensure good estima-
tion and some robustness to changes in lighting.

the sun changed position. To this end, we ensured some
robustness to the variation in lighting by normalising im-
ages using histogram equalisation [28], shown in Figure
7(c).

5.7. Results

In Figure 8 we show the ground-plane trace of the robot’s
motion across the desert floor. These traces, showing the
decomposed motion of Section 5.5, are subject to a lot of
drift, but we have shown in previous work (see [20]) that
the scale factor (corresponding to the camera height) is
consistent. Indeed, Figure 8 is a good illustration of the
power of relative topometric maps, as we maintain regu-
lar localisation in the space of homographies (see Section
5.2). Here also for the first time, we show localisation
between multiple experiences, as the robot grows its map
and enriches it with topological (localisation) links.

6. CONCLUSIONS AND FURTHER WORK

As expected, Oxford VO performed very well during the
MURFI mission proper. The T&R exercises showed that
Dub4 can be successfully used in a Mars-like environ-
ment, with successful localisation on most portions of
the “taught” trajectory and resilience to changing lighting
conditions leading to low deviations (≤ 0.5m) from the
planned mission. This would in turn allow the mission
planners to design complex and intricate autonomous ex-
ploration missions while maintaining the safety of the
rover. The monocular camera based localisation testing
also generated good results, indicating that this reduced-
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Figure 8. The gray lines connecting these colourful traces
indicate the localisation of one drive (experience) to an-
other. The frequency of these connecting lines increases
with the accuracy of the metric pose estimate relative
to the corresponding experience. This shows that de-
spite accumulating error in the global position of the
robot, it can still reliably localise (enabling accurate con-
trol), aided by a constantly evolving representation of the
world.

bandwidth approach shows considerable promise. Over-
all we think it likely that only minor modifications to the
underlying processes of each technique will be needed to
ensure they are highly effective in planetary surface en-
vironments, and future work will implement these modi-
fications. This will also address the potential to generate
dense reconstructions of the terrain surrounding the rover
using depth map data from the stereo camera fused with
VO information. In addition, this phase of the work will
investigate whether also fusing LIDAR-sourced data im-
proves the quality of the reconstruction. This area has
shown great potential in a terrestrial context to generate
feature rich 3-D meshes of the scene. In a Space con-
text, the ability to generate life-like representations of the
scene could be extremely useful to mission scientists and
others as an aid to better understanding the features of
the area near the rover and helping to better focus the
science effort. Looking further ahead, application of ad-
vanced machine learning techniques and advanced auton-
omy could bring the possibility of a true “robot geologist”
closer to reality.
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