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Abstract— We present a challenging new dataset for au-
tonomous driving: the Oxford RobotCar Dataset. Over the
period of May 2014 to December 2015 we traversed a route
through central Oxford twice a week on average using the
Oxford RobotCar platform, an autonomous Nissan LEAF. This
resulted in over 1000km of recorded driving with almost
20 million images collected from 6 cameras mounted to the
vehicle, along with LIDAR, GPS and INS ground truth. Data
was collected in all weather conditions, including heavy rain,
night, direct sunlight and snow. Road and building works
over the period of a year significantly changed sections of
the route from the beginning to the end of data collection.
By frequently traversing the same route over the period of
a year we enable research investigating long-term localisation
and mapping for autonomous vehicles in real-world, dynamic
urban environments. The full dataset is available for download
at: http://robotcar-dataset.robots.ox.ac.uk

I. INTRODUCTION

Autonomous vehicle research is critically dependent on

vast quantities of real-world data for development, testing

and validation of algorithms before deployment on public

roads. Following the benchmark-driven approach of the

computer vision community, a number of vision-based au-

tonomous driving datasets have been released including [1],

[2], [3], [4], [5], notably the KITTI dataset in [6] and

the recent Cityscapes dataset in [7]. These datasets focus

primarily on the development of algorithmic competencies

for autonomous driving: motion estimation as in [8], [9],

stereo reconstruction as in [10], [11], pedestrian and vehicle

detection as in [12], [13] and semantic classification as in

[14], [15]. However, these datasets do not address many of

the challenges of long-term autonomy: chiefly, localisation in

the same environment under significantly different conditions

as in [16], [17], and mapping in the presence of structural

change over time as in [18], [19].

In this paper we present a large-scale dataset focused

on long-term autonomous driving. We have collected more

than 20TB of image, LIDAR and GPS data by repeatedly

traversing a route in central Oxford, UK over the period of a

year, resulting in over 1000km of recorded driving. Sample

3D visualisations of the data collected are shown in Fig. 1.

By driving the same route under different conditions over a

long time period, we capture a large range of variation in

scene appearance and structure due to illumination, weather,

dynamic objects, seasonal effects and construction. Along

with the raw recordings from all the sensors, we provide

a full set of intrinsic and extrinsic sensor calibrations, as
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Fig. 1. The Oxford RobotCar Dataset for long-term road vehicle autonomy.
Data was collected using the RobotCar platform repeatedly traversing an
approximately 10km route in central Oxford, UK for over a year. This
resulted in over 100 traversals of the same route, capturing the large variation
in appearance and structure of a dynamic city environment over long periods
of time. The image, LIDAR and GPS data collected enable research into
long-term mapping and localisation for autonomous vehicles, with sample
3D maps built from different areas in the dataset shown here.

well as MATLAB development tools for accessing and

manipulating the raw sensor data.

By providing this large-scale dataset to researchers, we

hope to accelerate research towards long-term autonomy for

the mobile robots and autonomous vehicles of the future.

II. THE ROBOTCAR PLATFORM

The data was collected using the Oxford RobotCar plat-

form, an autonomous-capable Nissan LEAF, illustrated in

Fig. 2. The RobotCar is equipped with the following sensors:

• 1 x Point Grey Bumblebee XB3 (BBX3-13S2C-38)

trinocular stereo camera, 1280 × 960 × 3, 16Hz, 1/3”

Sony ICX445 CCD, global shutter, 3.8mm lens, 66◦

HFoV, 12/24cm baseline

• 3 x Point Grey Grasshopper2 (GS2-FW-14S5C-C)

monocular camera, 1024 × 1024, 11.1Hz, 2/3” Sony

http://robotcar-dataset.robots.ox.ac.uk
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Fig. 2. The RobotCar platform (top) and sensor location diagram.
Coordinate frames show the origin and direction of each sensor mounted to
the vehicle with the convention: x-forward (red), y-right (green), z-down
(blue). Measurements listed are approximated to the nearest centimetre; the
development tools include exact SE(3) extrinsic calibrations for all sensors.

ICX285 CCD, global shutter, 2.67mm fisheye lens

(Sunex DSL315B-650-F2.3), 180◦ HFoV

• 2 x SICK LMS-151 2D LIDAR, 270◦ FoV, 50Hz, 50m

range, 0.5◦ resolution

• 1 x SICK LD-MRS 3D LIDAR, 85◦ HFoV, 3.2◦ VFoV,

4 planes, 12.5Hz, 50m range, 0.125◦ resolution

• 1 x NovAtel SPAN-CPT ALIGN inertial and GPS

navigation system, 6 axis, 50Hz, GPS/GLONASS, dual

antenna

The locations of the sensors on the vehicle is shown in Fig.

2. All sensors on the vehicle were logged using a PC running

Ubuntu Linux with two eight-core Intel Xeon E5-2670

processors, 96GB quad-channel DDR3 memory and a RAID

0 (striped) array of eight 512GB SSDs, for a total capacity

of 4 terabytes. All sensor drivers and logging processes were

developed internally to provide accurate synchronisation and

timestamping of the recorded data.

Both LMS-151 2D LIDAR sensors are mounted in a

“push-broom” configuration, to provide a scan of the en-

vironment around the vehicle during forward motion. By

combining these scans with a global or local pose source,

an accurate 3D reconstruction of the environment is formed

as illustrated in Fig. 1; software to generate 3D pointclouds

Fig. 3. Primary 10km data collection route illustrating variations in GPS
reception and INS quality. Most datasets exhibited good GPS reception (left)
shown in green. In some locations, poor GPS reception caused drift in the
INS solution (middle, red), although raw GPS measurements (cyan) were
still available. Occasionally a loss of reception caused significant positioning
error over a large portion of the route (right).

is provided with the MATLAB development tools. The LD-

MRS sensor is mounted in a forward-facing configuration to

detect obstacles in front of the vehicle.

The combination of the Bumblebee XB3 and three

Grasshopper2 cameras provides a full 360 degree visual cov-

erage of the scene around the vehicle. The three Grasshop-

per2 cameras were synchronised using the automatic method

provided by Point Grey for cameras sharing a Firewire

800 bus1, yielding an average frame rate of 11.1Hz. The

Bumblebee XB3 camera was logged at the maximum frame

rate of 16Hz.

A custom auto-exposure controller was developed for the

Bumblebee XB3 to provide well-exposed images of the

ground and surrounding buildings, without attempting to

correctly expose the sky or the front of the vehicle. However,

this occasionally resulted in overexposed frames due to

the slower response of the software auto-exposure control.

The hardware region-of-interest auto-exposure controller was

used for the Grasshopper2 to provide well-exposed images.

III. DATA COLLECTION

The data collection spans the period of 6 May 2014 to

13 December 2015, and consists of 1010.46km of recorded

driving in central Oxford, UK. The vehicle was driven manu-

ally throughout the period of data collection; no autonomous

capabilities were used. The total uncompressed size of the

data collected is 23.15TB. The primary data collection route,

shown in Fig. 3, was traversed over 100 times over the

period of a year. Fig. 4 presents a montage of images taken

from the same location on different traversals, illustrating the

range of appearance changes over time. Table I lists summary

statistics for the entire year-long dataset.

Traversal times were chosen to capture a wide range of

conditions, including pedestrian, cyclist and vehicle traffic,

light and heavy rain, direct sun, snow, and dawn, dusk and

night. To reduce the buildup of dust and moisture on the

camera lenses and LIDAR windows, they were cleaned with

a microfiber cloth before each traversal. Labels for each

condition have been added to each traversal, and traversals

can be grouped by labels for easy collection of a particular

condition. Fig. 5 presents the different condition labels and

1https://www.ptgrey.com/kb/10252
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Fig. 4. Montage of over 100 traversals of the same location between May 2014 and December 2015, illustrating the large changes in appearance over
the range of conditions. Along with short-term lighting and weather changes, long-term changes due to seasonal variations are evident. Note the alignment
of the blue sign on the left shoulder of the road.



TABLE I

COLLECTED DATA SUMMARY STATISTICS

Sensor Type Count Size

Bumblebee XB3 Image 11,070,651 13.78TB

Grasshopper2 Image 8,485,839 9.08TB

LMS-151 2D Scan 25,618,605 255.95GB

LD-MRS 3D Scan 3,226,183 31.76GB

SPAN-CPT GPS 3D Position 1,188,943 496MB

SPAN-CPT INS 6DoF Position 11,535,144 4.74GB

Stereo VO 6DoF Position 3,690,067 422MB

Fig. 5. Number of traversals for different condition labels. A number
of environmental factors influenced the route, including changes in illumi-
nation and appearance, roadworks and construction causing detours, and
atmospheric conditions affecting GPS reception. Traversals can be sorted
by label for easy download and investigation of a particular environmental
condition.

the number of traversals with each label. Fig. 6 illustrates the

changes in appearance from a single location due to different

conditions.

Due to roadworks and changes in traffic conditions, it was

not possible to retrace the exact route for every traversal. In

some sections of the route, there were significant structural

changes over the period of data collection. Fig. 7 illustrates

the change in structure of an intersection due to redevelop-

ment in late 2014.

The quality of GPS reception and the accuracy of the

fused INS solution varied significantly during the course of

data collection, as illustrated in Fig. 3. We provide additional

quality information as reported by the SPAN-CPT (satellite

count, positioning error, fusion status) to aid in use of the

GPS+Inertial data. However, we do not suggest directly

using it as “ground truth” for benchmarking localisation and

mapping algorithms, especially if using multiple traversals

spaced over many months.

A. Sensor Calibration

We provide a full set of calibration data for each sensor

to use for multi-sensor fusion and 3D reconstruction. Fig. 2

illustrates the extrinsic configuration of sensors on the Robot-

Car platform. All sensor drivers make use of the TICSync

library of [20] to ensure sub-millisecond clock calibration

between different sensors on different communication buses.

Intrinsic and extrinsic calibrations are provided for each

sensor as follows:

Fig. 6. Illustration of the variation in driving conditions captured during
data collection. The appearance of the scene changed significantly due to
lighting (direct sun, overcast, night), weather (rain, snow), and occlusions
by other road users (vehicles, pedestrians, cyclists).

1) Intrinsics: For the Bumblebee XB3 images, two sets of

rectification look-up-tables are provided in the development

kit: one for the 12cm narrow baseline configuration, con-

sisting of the center and right images, and one for the

24cm wide baseline configuration, consisting of the left

and right images. Care must be taken to select the correct

configuration of images for narrow- or wide-baseline stereo

if downloading only a portion of the dataset. The values in

the Bumblebee XB3 look-up-tables are provided by Point

Grey as part of a factory calibration.

For the Grasshopper2 images, one undistortion look-up-

table is provided for each camera, generated using a cal-

ibrated model obtained using the OCamCalib toolbox of

[21]. However, perspective undistortion of fisheye images

often results in highly non-uniform images, and different

models of fisheye distortion are often preferable for different

applications. As such we also provide the original images of

a checkerboard sequence used as input for the OCamCalib

toolbox calibration.

2) Extrinsics: For each LIDAR scanner, an initial calibra-

tion estimate was provided by the camera-LIDAR calibration

process described in [22]. For the 2D LIDAR scanners, the

calibration estimate was refined using the online calibration

approach described in [23], using visual odometry derived

from the Bumblebee XB3 as the relative pose source. The

calibration from the GPS+Inertial sensor to the Bumblebee

XB3 was computed using a modified version of [23], using

the trajectory from the inertial sensor as the relative pose



Fig. 7. Structural change in the environment over time. The original
intersection (top left) was redeveloped over a period of months, resulting in
redirection of traffic during construction (top right, bottom left). The final
intersection (bottom right) has a completely different road layout, replacing
traffic lights with a roundabout.

source to construct the 3D LIDAR mesh. The LD-MRS

was calibrated using a pointcloud built from 2D LIDAR

scans using the approach described in [24]. All extrinsics

are provided with the MATLAB development tools.

Lifelong sensor calibration is a challenging problem re-

lated to long-term localisation and mapping. While we

provide our best estimates of the extrinsics using the above

methods, we cannot guarantee they will be exact for a

specific traversal. We encourage researchers investigating

online calibration to use our extrinsics as an initial guess

for long-term estimation of sensor calibration parameters.

B. Data Formats

For distribution we have divided up the datasets into

individual routes, each corresponding to a single traversal.

To reduce download file sizes, we have further divided up

each traversal into chunks, where each chunk corresponds

to an approximately 6 minute segment of the route. Within

one traversal, chunks from different sensors will overlap in

time (e.g. left stereo chunk 2 covers the same time period

as LD-MRS chunk 2); however, chunks do not correspond

between different traversals.

Each chunk has been packaged as a tar archive for down-

loading; the folder structure inside the archive is illustrated in

Fig. 8. No tar file should exceed 5GB in size. It is intended

that all tar archives are extracted in the same directory:

this will preserve the folder structure in Fig. 8 when multiple

chunks and/or traversals are downloaded. Each chunk archive

also contains a full list of all sensor timestamps for the traver-

sal in the <sensor>.timestamps file, as well as the list

of condition tags as illustrated in Fig. 5 in the tags.csv

file. The timestamps file contains ASCII formatted data, with

each line corresponding to the UNIX timestamp and chunk

ID of a single image or LIDAR scan.

We have converted our internal logging formatted sensor

Fig. 8. Directory layout for a single data set. When downloading multiple
tar archives from multiple traversals, extracting them all in the same
directory will preserve the folder structure.

data to standard data formats for portability. The formats for

each data type are as follows:

1) Images: All images are stored as lossless-

compressed PNG files2 in unrectified 8-bit

raw Bayer format. The files are structured as

<camera>/<sensor>/<timestamp>.png, where

<camera> is stereo for Bumblebee XB3 images or

mono for Grasshopper2 images, <sensor> is any of

left, centre, right for Bumblebee XB3 images

and left, rear, right for Grasshopper2 cameras,

and <timestamp> is the UNIX timestamp of the capture,

measured in microseconds. The top left 4 pixel Bayer

pattern for the Bumblebee XB3 images is GBRG, and for

Grasshopper2 images is RGGB. The raw Bayer images

can be converted to RGB using the MATLAB demosaic

function, the OpenCV cvtColor function or similar

methods. Image undistortion and rectification is explained

in the following section on Development Tools.

2) 2D LIDAR scans: The 2D LIDAR returns for each scan

are stored as double-precision floating point values packed

2https://www.w3.org/TR/PNG/

https://www.w3.org/TR/PNG/


Fig. 9. Left-to-right: raw Bayer image (provided in PNG format),
demosaiced colour image, and rectified perspective image from (top) Bum-
blebee XB3 and (bottom) Grasshopper2 cameras. MATLAB functions for
demosaicing and undistortion are provided in the development tools.

into a binary file, similar to the Velodyne scan format in [6].

The files are structured as <laser>/<timestamp>.bin,

where <laser> is lms front or lms rear. Each 2D

scan consists of 541 triplets of (x, y,R), where x, y are

the 2D Cartesian coordinates of the LIDAR return rel-

ative to the sensor (in metres), and R is the measured

infrared reflectance value. No correction for the motion of

the vehicle has been performed when projecting the points

into Cartesian coordinates; this can be optionally performed

by interpolating a timestamp for each point based on the

15ms rotation period of the laser. For a scan with filename

<timestamp>.bin, the (x, y,R) triplet at index 0 was

collected at <timestamp> and the triplet at index 540 was

collected at <timestamp>+15e3.

3) 3D LIDAR scans: The 3D LIDAR returns from the LD-

MRS are stored in the same packed double-precision floating

point binary format as the 2D LIDAR scans. The files are

structured as ldmrs/<timestamp>.bin. Each 3D scan

consists of triplets of (x, y, z), which is the 3D Cartesian

coordinates of the LIDAR return relative to the sensor (in

metres). The LD-MRS does not provide infrared reflectance

values for LIDAR returns.

4) GPS+Inertial: GPS and inertial sensor data from the

SPAN-CPT are provided in an ASCII-formatted csv file.

Two separate files are provided: gps.csv and ins.csv.

gps.csv contains the GPS-only solution of latitude (deg),

longitude (deg), altitude (m) and uncertainty (m) at 5Hz,

and ins.csv contains the fused GPS+Inertial solution,

consisting of 3D UTM position (m), velocity (m/s), attitude

(deg) and solution status at 50Hz.

5) Visual Odometry (VO): Local errors in the

GPS+Inertial solution (due to loss or reacquisition of satellite

signals) can lead to discontinuites in local maps built using

this sensor as a pose source. For some applications a smooth

local pose source that is not necessarily globally accurate

is preferable, for example local 3D pointcloud construction

as shown in Fig. 10. We have processed the full set of

Bumblebee XB3 wide-baseline stereo imagery using our

visual odometry system described in [25] and provide the

Fig. 10. Local 3D pointclouds generated using (top) INS poses and
(bottom) local VO poses, produced with the included development tools.
In locations with poor GPS reception, there are discontinuities in the INS
pose solution leading to corrupted local 3D pointclouds. Visual odometry
provides a smooth local pose estimate but drifts over larger distances.

relative pose estimates as a reference local pose source. The

file vo.csv contains the relative pose solution, consisting

of the source and destination frame timestamps, along with

the six-vector Euler parameterisation (x, y, z, α, β, γ) of

the SE(3) relative pose relating the two frames. Our visual

odometry solution is accurate over hundreds of metres

(suitable for building local 3D pointclouds) but drifts over

larger scales, and is also influenced by scene content and

exposure levels; we provide it only as a reference and not

as a ground truth relative pose system.

IV. DEVELOPMENT TOOLS

We provide a set of simple MATLAB development tools

for easy access to and manipulation of the dataset. The MAT-

LAB functions provided include simple functions to load and

display imagery and LIDAR scans, as well as more advanced

functions involving generating 3D pointclouds from push-

broom 2D scans, and projecting 3D pointclouds into camera

images. Fig. 11 illustrates sample uses of the development



tools.

A. Image Demosaicing and Undistortion

The function LoadImage.m reads a raw Bayer image

from a specified directory and at a specified timestamp, and

returns a MATLAB format RGB colour image. The function

can also take an optional look-up table argument (provided

by the function ReadCameraModel.m) which will then

rectify the image using the undistortion look-up tables.

Examples of raw Bayer, RGB and rectified images are shown

in Fig. 9. The function PlayImages.m will produce an

animation of the available images from a specified directory,

shown in Fig. 11(a).

B. 3D Pointcloud Generation

The function BuildPointcloud.m combines a 6DoF

trajectory from the INS with 2D LIDAR scans to pro-

duce a local 3D pointcloud, as pictured in Fig. 11(b). The

resulting pointcloud is coloured using LIDAR reflectance

information, highlighting lane markings and other reflective

objects. The size of the pointcloud can be controlled using

the start timestamp and end timestamp arguments.

C. Pointcloud Projection Into Images

The function ProjectLaserIntoCamera.m com-

bines the above two tools as follows: LoadImage.m is used

to retrieve and undistort a raw image from a specified direc-

tory at a specified timestamp, then BuildPointcloud.m

is used to generate a local 3D pointcloud around the vehicle

at the time of image capture. The 3D pointcloud is then pro-

jected into the 2D camera image using the camera intrinsics,

producing the result shown in Fig. 11(c).

V. LESSONS LEARNED

In the process of collecting, storing and processing the data

collected from the RobotCar we learned a number of valuable

lessons, which we summarise here for others attempting

similar large-scale dataset collection:

1) Log raw data only: For each sensor we ensure that

only the raw packets data received over the wire and an

accurate host timestamp are logged to disk; we perform no

parsing, compression or filtering (e.g. Bayer demosaicing).

We also enable all optional log messages from all sensors

(e.g. status messages). This maximises the utility of the data,

which may only be apparent months or years after collection,

and minimises ‘baked-in’ decisions about pre-processing. For

example, methods that depend on photometric error as in [26]

or precise colourimetry as in [27] are strongly affected by

image compression and Bayer demosaicing; by logging raw

packets directly from the camera we minimise the restrictions

on future research.

2) Use forward-compatible formats: When collecting data

over periods of multiple years, it is inevitable that software

errors arise and are fixed, and the functionality of tools to

manipulate data improve over time. Therefore it is important

that data is logged in forward-compatible binary formats that

are not tied to a particular software version. Internally we use

Google Protocol Buffers3 to manage our data formats; this

allows us to change or extend message definitions, access

message data in multiple languages using code generators

and maintain binary compatibility with older software ver-

sions.

3) Separate logged and processed data: When processing

and manipulating the data, it is often useful to generate

associated metadata (e.g. index files, LIDAR pointclouds,

visual odometry results). However, the tools that generate

this metadata will change and improve over long periods, and

it is important that the processed logs remain distinct from

the original raw recordings. In practice we maintain two log

directories on our data servers; one read-only directory that

only the RobotCar-mounted computer can upload to, and one

read-write directory that mirrors the logged data and allows

users to add metadata. Therefore, if one of the metadata tools

is upgraded, there is no risk of losing logged raw data when

deleting or replacing all previous metadata generated by the

tool.

VI. SUMMARY AND FUTURE WORK

We have presented the Oxford RobotCar Dataset, a new

large-scale dataset focused on long-term autonomy for au-

tonomous road vehicles. With the release of this dataset

we intend to challenge current approaches to long-term

localisation and mapping, and enable research investigating

lifelong learning for autonomous vehicles and mobile robots.

In the near future we hope to offer a benchmarking

service similar to the KITTI benchmark suite4, providing the

opportunity for researchers to publicly compare long-term

localisation and mapping methods using a common ground

truth and evaluation criteria. We also encourage researchers

to develop their own application-specific benchmarks derived

from the data presented in this paper, e.g. using the open

source structure-from-motion of [28] or the optimisation

package of [29], which we will endeavour to support.
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